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ABSTRACT 
This article delves deeper into the study of local bifurcation in maps, although only in the 

context of a single dimension. The various local bifurcation types common to one-dimensional 

maps each have their own specific conditions that must be fulfilled. An object divides into two 

when it bifurcates. After a bifurcation, a family of one-parameter functions retains its stable or 

cyclic point structure. A bifurcation in the iterative process happens when a parameter is 

altered, causing a qualitative change in behavior. The phenomena of local splitting can be 

induced by adjusting just one parameter. Both the norm form of the transcritical split and the 

stability of the saddle node are highlighted. As with supercritical and subcritical bifurcations, 

the stability of the pitchfork bifurcation is assessed, as is its norm form. 
 

Keywords: Local bifurcation, Bifurcation point, Stability, Saddle-node bifurcation, Transcritical 

bifurcation, Pitchfork bifurcation 

 

1. Introduction 
The distinctive configuration of a dynamical system 

not only offers specialized analytical methods 

tailored to that system, but also significantly 

constrains the range of potential dynamics. The 

significance of these atypical structures is 

heightened by their increasing frequency of 

occurrence. One-dimensional autonomous map 

bifurcation theory is well-known and found in 

many discrete dynamical system studies (Cushing 

et al., 2003; Elaydi, 2008; Iooss, 1979; Robinson, 

1999; Wiggins, 2003; Kuznetsov, 2004; Crawford, 

1991; Hale &Kocak, 1991). Differential equations 

have been used to assess a wide variety of 

demographic models. The capabilities of discrete-

time platforms may be useful in computational 

simulations (Ahmad, 1993; Tang & Zou, 2006). If 

the population size is steady during the lifespan or 

remains small over a number of generations, 

discrete-time models tend to most accurately reflect 

the fluctuations in population dynamics (Zhou & 

Zho, 2003; Liu, 2010). Using difference equations 
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to model interactions across species with non 

overlapping life cycles makes such models more 

amenable to analysis of action patterns (Freedman, 

1980; Agarwal, 2000; Goh, 1980). When compared 

to their continuous-time equivalents, numerical 

simulations of discrete-time models offer greater 

speed of computation and a greater number of 

fluctuating behavior representations (Zhao et al., 

2011; Flores, 2011; Hone et al., 2010). There is no 

doubt that discrete-time models have significant 

advantages over continuous-time ones in situations 

in which the generations that make up a population 

never overlap. Chaotic behavior, cyclical windows, 

and period-doubling bifurcations are all 

characteristics seen in the Ricker curve (Azizi & 

Kerr, 2020; Ricker, 1954; Azizi & Kerr, 2020; 

Azizi, 2015). There exist trajectories that span a 

sizeable piece of the irreducible circle and periodic 

orbits that are unaffected by one another. A closed 

invariant curve is produced by both super-critical 

and sub-critical bifurcations, the former generating 

an unstable curve and the latter yielding a curve 

that are inflexible (Lei, 2018). Different forms of 

comparable species display a wide variety of 

behaviors and physical characteristics(Chen et al., 

2012). Ecological modeling at several time scales is 

thus more useful. Over the preceding decade, 

researchers have examined the phase’s hierarchy 

model of species evolution in great detail (Li & 

Chen, 2017; Xiao et al., 2019). Bifurcation analysis 

is often necessary to completely understand the 

parameter dynamics of ODE models used in 

mathematical biology. In recent decades, 

"mechanobiology" has come to encompass the 

study of the physical features and activities of cells 

in addition to their biological counterparts. 

Biological models of cellular behavior have been 

developed as a result of this curiosity and are being 

put to use in biochemical and mechanical 

studies(Rajagopal et al., 2007). This alleviated their 

worry, but more work is needed to fully understand 

the mathematical model's behavior spanning a wide 

variety of inputs. Given the rarity of homoclinic 

solutions and saddle-node bifurcations in co 

dimension two, we were curious to see if Zmurchok 

et al.'s model might produce these phenomena 

(Zmurchok et al., 2018). The images here show 

how transcritical and pitchfork bifurcations 

frequently lead to aberrations that break symmetry. 

Analytic bifurcation concept is used to precisely 

specify the form of the disrupted local bifurcation 

schematics (Crandall & Rabinowitz, 1971; Crandall 

& Rabinowitz, 1973). A number of studies (Kirchg 

& Sorger, 1969; Nirenberg, 1981; Ruelle, 1973; 

Sattinger, 1971) that employs topological 

techniques to address bifurcation issues are 

referenced. It is investigated the circumstances 

under which the bifurcation of a unique simple 

equilibrium produces a vast family of simple non-

hyperbolic equilibrium with non-zero indices. The 

pitchfork bifurcation, proposed by (Crandall & 

Rabinowitz, 1971; Chow & Hale, 1982) and 

described by Crandall & Rabinowitz (1973), 

assumes that each parameter has no less than one 

zero near the bifurcation point. As Crandall and 

Rabinowitz devised pitchfork splitting. A discrete 

dynamical system that has the potential to 

summaries these data according to yet another 

criterion and offer an environment in which the 

critical curve may be discovered with relative ease. 

Because of the existence of reflecting symmetry, 

such a condition in an ongoing dynamical system is 

referred to as a pitchfork bifurcation (Monroe, 

1992). This is because the reflection symmetry is 

present. The very same criterion can also be used to 

provide a one-of-a-kind illustration of Monroe's 

hypothesis by Ganikhodjaev et al. (2003). 

2. Saddle-node bifurcation 

A saddle-node is a dynamical system with two 

concealed contending nodes. The trace inversion 

makes the bifurcation a saddle-node bifurcation. A 

saddle-node bifurcation may develop at the pivot's 

centre. The two equivalence elements in an a 

single-dimensional cycle rest are saddle and node. 

Bifurcation happens when one scheme parameter 

causes another to change fixed point stability or 

permanence. A suspicious object that remains 

cohesive on a vertical beam's turret is a good naive 

example of a dynamical system bifurcation. The 

item's mass may determine it. As the object's mass 

grows, the beam angle, x, remains roughly constant. 

The beam's mass approaching the bifurcation point 

will have a severe impact. Adjusting one control 

parameter changed the system's behavior. The 

saddle-node bifurcation (Layek, 2015). can be 
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observed in the system ( ) ( ) =  ,,, xxftx
(1)                                                                                                                               

at ( ),x  if the following conditions are met at the 

equilibrium point x  at  . 

( )0,0 0f =
 

(2) 

0, 0 0x

f

x
= =

 
=    

(3) 

0, 0 0x

f



= =

 
 

   

(4)     

2

0, 02
0x

f

x
= =

 
 

   

(5) 

Consider the one-dimensional equation of the form 

( ) +== xx
dt

dx
xf ;, 2             (6) 

Put an  in front of it to parameterize it. The 

steady-state values for (6) are found by solving for 

( ) 0, =xf  

02=+ x  

−= 2x  

−= 2,1*x
 

(7) 

There are three possible results; depending on how 

we set the parameter  .When 0,   the system 

has two fixed points. They add up to one another at 

* 0x =  when 0 = , but disappear when 0  . 

We will factor in underflow in the real line. The 

velocity vector x at any point x in the flow can be 

found by solving the system ( ),x f x = , where 

( ),f x   is the real-line representation of the 

vector field describing the flow. 

 

Fig. 1 Bifurcation Diagram for a Saddle Node Bifurcation of the equation (7). 

 

                      (a)
0 

                                          (b) 
0 =

                                         (c) 
0   

Fig. 2 Flow diagrams for the saddle node bifurcation of the equation (6) and (a) 0   , (b) 0 = , and (c)

0  . 

The arrow will point to the left if 0f  , and to the right if 0f  . In this case, the flow is to the right 
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because f is greater than zero, and it is to the left 

because f is less than zero. Flow is unaffected by a 

change in 0f = . We call the locations of the 

system's fixed points or equilibrium points (6) 

where 0f =  because there is no flow at those 

locations. These are the locations where the system 

is stable, or in equilibrium. Figure (2) depicts the 

parabola-like shape that the graph of the vector 

field ( ),f x   takes in the f −  plane. Figure 

2(a) depicts two fixed points of the systems for the 

case where 0  . According to the flow 

imagination, the figure should show an unstable 

fixed point at x = −  and a stable fixed point at

x = − − . Parabola rises and the two fixed 

points move closer together until they meet at 

0x =  and 0 = , as can be seen in the figure. For

0  , the system does not settle into any unique 

configuration, as depicted in figure 2(c). The 

dynamics of this very basic system are utterly 

mesmerizing, despite their apparent simplicity. 

Since the vector fields for 0   and 0   are 

qualitatively different from one another, the 

dynamics underwent a bifurcation when 0 = . 

The bifurcation point, or turning point of the 

trajectory, is the location along the trajectory at 

which the parameter   has a value of zero. The 

bifurcation diagram of the system depicts the 

connection between   and *x , the fixed point of 

the system. The term "saddle-node bifurcation" is 

used to describe this specific type of bifurcation.  

2.1 (a) Regarding the equation (6), the saddle-

node bifurcation can be written in its normal 

form. 

In the event that we presume the system (1) has a 

point of equilibrium at 0x x=  for 0 =  in a 

region where the saddle-node bifurcation 

requirements are satisfied from the equation (2), 

(3), (4), and (5), then this would suggest that the 

point of equilibrium is situated at a saddle-node. 

The result that we get when we extend the function 

( ),f x   in a Taylor series in the area surrounding 

the point ( )0 0,x   is as follows: 

( ),x f x =  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

0 0 0 0 0 0

0 0 0 0

2
2

0 0 0 0 0, , ,2

2 2
2

0 0 0, ,2

1
,

2!

1
...

2!

x x x

x x

f f f
f x x x x x

x x

f f
x x

x

  

 

  


   
 

     
= + − + − + −           

    
+ − − + − +   

     

Using the conditions of (2), (3), (4), and (5) the 

above equation contains 

( ),x f x =  

( ) ( ) ( ) ( )0 0 0 0

2
2

0 0, ,2

1
...

2!
x x

f f
x x

x
 

 


   
= − + − +  

    

 

(8) 

From the system (6) 

( ) +== xx
dt

dx
xf ;, 2  (9) 

Differentiating (9) with respect to   

( )0 0,
1

x

f


 
= 

 
 [Taking 0 0x = and 0 0 = ] 

( )0,0
1

f



 
= 

 
 

Differentiating (9) with respect to x  

( )0 0,
2

x

f
x

x


 
=    

(10) 

[Taking 0 0x = and 0 0 = ] 

( )0,0
0

f

x

 
=  
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Differentiating (10) with respect to x  

( )0 0

2

,2
2

x

f

x


 
= 

 
 

[Taking 0 0x = and 0 0 = ] 

( )

2

0,02
2

f

x

 
= 

 
 

Putting the above values from (8) we get, 

( ),x f x =  

( ) ( ) ( ) ( )

2
2

0,0 0,02

1
0 0 ...

2!

f f
x

x




   
= − + − +  

    

21
.1 2 ...

2!
x= +  +

 

21
. ...

2!
x  = +  +

 

(11) 

In this equation, both ( )0,0
1

f




 
= = 

 
 and 

( )

2

0,02
2

f

x


 
= = 

 
are assumed to be non-zero 

real numbers. The term "normal form" of the 

saddle-node bifurcation is what the equation (11) is 

referring to when it makes its reference to the 

phenomenon. This gives a substantial advantage 

when trying to establish the bifurcation that a 

system goes through, since it helps to narrow down 

the possible outcomes. 

Consider the one-dimensional equation of the form 

( ) ( )3 2, 6 10 5f x x x x  = − − − + −
 

(12) 

Put an  in front of it to parameterize it. The 

steady-state values for (12) are found by solving for 

( ), 0f x  =  

( )3 26 10 5 0x x x  − − − + − =  

3 26 10 5 0x x x x  − − + + − =  

3 2 25 5 5 5 0x x x x x x  − − + − + + − =  

( ) ( ) ( ) ( )
2

1 5 1 1 5 1 0x x x x x x − − − − − + − =  

( )( )21 5 5 0x x x  − − − + =  

Either ( )1 0x − =  or ( )2 5 5 0x x − − + =  

1x = or ( )2 5 5 0x x − − − =  

( )5 25 4 5

2
x

 + −
 =  

5 25 4 20

2
x

 + −
 =  

5 5 4

2
x

 +
 =  

( )1
5 5 4

2
x  =  +

 

(13) 

 
Fig. 3 Bifurcation diagram for a saddle node 

bifurcation of the equation (13). 

 

Now, differentiation (12) with respect to x, we have 

( ) 2, 3 12 10
f

x x x
x

 
 

= − + −  
 

Again, differentiating (12) with respect to  , we 

get 

( ), 1
f

x x


 
= − + 

 
 

( )
2

2
, 6 12.

f
x x

x


 
= − 

 
 

It is seen that ( )0 0, 0f x  =  

( )0 0, 0
f

x
x


 

=  
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( )0 0, 1 0
f

x 


 
= −  

 
 

( )
2

0 02
, 6 2.5 12 3 0.

f
x

x


 
=  − =  

 
 

The system (13) has a saddle-node bifurcation at

( )0 , ox y . Here 0 2.5x =  and 
0

5
.

4
 = −  

Regardless of what . 's value is, it is abundantly 

obvious that the system has a fixed point that 

corresponds to x . When 0  , the other two fixed 

points are represented by the equation

( )1
5 5 4

2
x  =  + , and when   is greater 

than zero, they are both real and distinct. When   

is bigger than zero, they vanish, and the only time 

they return again is when
0

5

4
 = − , when they 

correlate with the fixed point 2.5x = . As a 

consequence of this, the system experiences a 

saddle-node bifurcation at the point where 2.5x =

, with 
0

5

4
 = − acting as the point at which the 

system splits. 

2.1(b) Regarding the equation (12), the saddle-

node bifurcation can be written in its normal 

form. 

In the event that we presume the system (1) has a 

point of equilibrium at 0x x=  for 0 =  in a 

region where the saddle-node bifurcation 

requirements are satisfied from the equation (2), 

(3), (4), and (5), then this would suggest that the 

point of equilibrium is situated at a saddle-node. 

The result that we get when we extend the function 

( ),f x   in a Taylor series in the area surrounding 

the point ( )0 0,x   is as follows: 

( ),x f x =
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

0 0 0 0 0 0

0 0 0 0

2
2

0 0 0 0 0, , ,2

2 2
2

0 0 0, ,2

1
,

2!

1
...

2!

x x x

x x

f f f
f x x x x x

x x

f f
x x

x

  

 

  


   
 

     
= + − + − + −           

    
+ − − + − +   

     
Using the conditions of (2), (3), (4), and (5), the 

above equation contains 

( ),x f x =  

( ) ( ) ( ) ( )0 0 0 0

2
2

0 0, ,2

1
...

2!
x x

f f
x x

x
 

 


   
= − + − +  

    

 

(14) 

From the system (12) 

( ) ( ) −+−−−= xxxxxf ;5106, 23   

 (15) 

Differentiating (15) with respect to   

( )0 0,
1

x

f
x



 
= − + 

 
 [Taking 0 2.5x = and

0

5

4
 = − ] 

5
2.5,

4

2.5 1 1.5
f

  
− 

 

 
= − + = − 

 
 

Differentiating (15) with respect to x  

( )0 0

2

,
3 12 10

x

f
x x

x



 

= − − +    

(16) 

[Taking 0 2.5x = and 0

5

4
 = − ] 

( ) 2

5
2.5,

4

5
3 2.5 12 2.5 10

4

f

x  
− 

 

   
=  −  − − +     
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( )5
2.5,

4

18.75 30 1.25 10
f

x  
− 

 

 
= − − − +  

 

5
2.5,

4

18.75 30 1.25 10
f

x  
− 

 

 
= − + +  

 

5
2.5,

4

30 30 0
f

x  
− 

 

 
= − =  

 

Differentiating (16) with respect to x  

( )0 0

2

,2
6 12

x

f
x

x


 
= − 

 
 

[Taking 0 2.5x = and
0

5

4
 = − ] 

2

52
2.5,

4

6 2.5 12 15 12 3
f

x  
− 

 

 
=  − = − = 

 
 

Putting the above values from (14) we get, 

( ),x f x =  

( )
2

2

5 52
2.5, 2.5,

4 4

5 1
2.5 ...

4 2!

f f
x

x


    
− −   

   

    
= + + − +    

      

( ) ( ) 25 1
. 1.5 2.5 3 ...

4 2!
x

 
= + − + −  + 
 

 

( ) 25 1
. 2.5 ...

4 2!
x  

 
= + + −  + 
 

(17) 

In this equation, both 
5

2.5,
4

1.5
f


  

− 
 

 
= = − 

 
 

and 

2

52
2.5,

4

3
f

x


 
− 

 

 
= = 

 
are assumed to be 

non-zero real numbers. The term "normal form" of 

the saddle-node bifurcation is what the equation 

(17) is referring to when it makes its reference to 

the phenomenon. This gives a substantial advantage 

when trying to establish the bifurcation that a 

system goes through, since it helps to narrow down 

the possible outcomes. 

3. Transcritical bifurcation 

There is a subcategory of bifurcation theory called 

transcritical bifurcation, which describes the 

situation in which there is equilibrium with an 

eigenvalue in which the real component crosses 

zero. At a transcritical bifurcation, there is always a 

fixed point present, regardless of the values of the 

parameters. However, as the parameter is altered, so 

does the fixed point's stability. Both the unstable 

and stable fixed points are present before and after 

the bifurcation. The stability of one decreases and 

that of the other increases as they collide. This 

causes the previously unstable fixed point to 

become stable. After that, it can take either of two 

secure (stable)or risky(unstable) paths. This 

transition is called a transcritical bifurcation. 

There are a variety of sub-categories available of 
physical systems that are dependent on parameters, 
and one of the kinds of systems that fall into this 
category is one in which an equilibrium point is 
required to exist for all possible values of a 
parameter of the system and can never cease to 
exist. Other types of physical systems that are 
reliant on parameters include those that are 
dependent on variables. Another form of system 
that is dependent on parameters is one that consists 
of numerous physical systems, each of which is 
dependent on the system's parameters. However, 
depending on the value of the parameter, the 
stability's behavior may shift. This is because the 
parameter's value changes over time. This is 
because the parameter's value is highly 
unpredictable. Because the stable features of the 
fixed points vary with the values of the parameters, 
transcritical bifurcation may be distinguished from 
other types of bifurcation. Subcritical bifurcations 
are similar to transcritical bifurcations, which are 
still another type of bifurcation. The term 
"transcritical bifurcation" was originally developed 
to characterize this observable phenomenon.

 

Take the parameterized C2 map family 

:f R R R →  as an example. 

( )0 0, 0f x  =
 

(18) 

( )0 0,
0

x

f

x


 
=    

(19) 
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( )0 0,
0

x

f


 
= 

   

(20) 

( )0 0

2

,2
0

x

f

x


 
 

   

(21) 

( )0 0

2

,
0

x

f

x


 
 

    

(22) 

The following equation illustrates a transcritical 

bifurcation (Guckenheimer and Holmes 1997, 

p. 145): 

( ) 2,f x x x x = − +
                                   

(23) 

 are serving as the input parameter. 

Consideration is given to the system's equilibrium 

points as  

( ), 0f x  =  

2 0x x x − + =  

( )1 0x x − + =  

Either 0x =  or 1 0x − + =  

1x − = − −  

1x  = +  

This means there are two stable configurations, 

* 0, 1.x = +  Our Estimates 

( ), 2 1
f

x x
x

 
 

= − +  
 

( )0, 1
f

x
 

 
 = +  

 

( ), 2 1
f

x
   

 
 = − +  

 

( ), 1
f

x
  

 
 = − +    

 
Fig. 4 A transcritical bifurcation of the equation (23) by orbit diagram for arbitrary value of x  and .

 

                      
( ) 0a  

                                   
( ) 0b  =

                                
( ) 0c  

 
Fig. 5 Phase diagram for (a) 0,   (b) 0, = and (c) 0  of the equation (23). 
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The origin, which is a source (unstable) for 0 

and a sink (stable) for 0  , forms two separate 

equilibrium points * 0, 1x = +  for 0  . If   

is greater than zero, the opposite equilibrium point,

* 1x = +  is unstable and stable for 0  . 

Figure 5 depicts the phase diagrams for the 

aforementioned three scenarios. 

3.1 (a) Regarding the equation (23), the 

transcritical bifurcation can be written in its 

normal form. 

In the event that we presume the system (1) has a 

point of equilibrium at 0x x=  for 0 =  in a 

region where the transcritical bifurcation 

requirements are satisfied from the equation (18), 

(19), (20), (21), and (22) then this would suggest 

that the point of equilibrium is situated at a 

trancritical. The result that we get when we extend 

the function ( ),f x   in a Taylor series in the area 

surrounding the point ( )0 0,x   is as follows: 

( ),x f x =
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

0 0 0 0 0 0

0 0 0 0

2
2

0 0 0 0 0, , ,2

2 2
2

0 0 0, ,2

1
,

2!

1
...

2!

x x x

x x

f f f
f x x x x x

x x

f f
x x

x

  

 

  


   
 

     
= + − + − + −           

    
+ − − + − +   

     

Using the conditions of (18), (19), (20), (21), and 

(22) the above equation contains 

( ),x f x =
 

( )( ) ( ) ( ) ( )
2 2

2

0 0 0 0 0 0 02

1
, , ...

2!

f f
x x x x x x

x x
   



    
= − − + − +   

     

(24) 

From the system (23) 

( ) +−= xxxxxf ;, 2
                      

 (25) 

Differentiating (25) with respect to   

( )0 0,x

f
x



 
= 

 
 

( )0 0,
0

x

f


 
= 

 
 [Taking 0 0x = and 1 = − ] 

Differentiating (25) with respect to x  

( )0 0, 2 1
f

x x
x

 
 

= − +                             

(26) 

[Taking 0 0x = and 1 = − ] 

( )0, 1 2 1 1 2.0 1 0
f

x
x


 

− = − + = − − + =  
 

Differentiating (26) with respect to x  

( )
2

0 02
, 2

f
x

x


 
= − 

 
 

[Taking 0 0x = and 1 = − ] 

( )
2

2
0, 1 2

f

x

 
− = − 

 
 

( )
2

0 0, 1
f

x
x




 
= 

  
 

( )
2

0, 1 1
f

x 

 
− = 

  
 

Putting the above values from (24) we get, 

( ),x f x =  

( )( ) ( ) ( ) ( )
2 2

2

2

1
0 1 0, 1 0 0, 1 ...

2!

f f
x x

x x




    
= − + − + − − +   

     

 

( ) ( )21
1 1 2 ...

2!
x x= +  + − +  

( ) 21
1 ...

2!
x x  = +  + +

                        

(27) 
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In this equation, both ( )
2

0, 1 1
f

x




 
= − = 

  
 

and ( )
2

2
0, 1 2

f

x


 
= − = − 

 
are assumed to be 

non-zero real numbers. The term "normal form" of 

the transcritical bifurcation is what the equation 

(27) is referring to when it makes its reference to 

the phenomenon. This gives a substantial advantage 

when trying to establish the bifurcation that a 

system goes through, since it helps to narrow down 

the possible outcomes. 

4. Pitchfork bifurcation 

The transition from a single fixed point to three 

fixed points is a case of a local bifurcation referred 

as a pitchfork bifurcation. Pitchfork bifurcations are 

available in supercritical and subcritical varieties, 

just as Hopf bifurcations do. In persistent 

dynamical systems, such as flows, modeled by 

ordinary differential equations, symmetry 

destruction may appear in the form of pitchfork 

bifurcations. 

Take the parameterized C3 map family 

:f R R R →  as an example. 

( ) ( ), ,f x f x − = −
 

(28) 

( )0 0, 0f x  =
 

(29) 

( )0 0,
0

x

f

x


 
=  

 (30) 

( )0 0,
0

x

f


 
= 

   

(31) 

( )0 0

2

,2
0

x

f

x


 
= 

   

(32) 

( )0 0

2

,
0

x

f

x


 
 

    

(33) 

( )0 0

3

,3
0

x

f

x


 
 

   

(34) 

However, (35) can have some leeway. (Rasband 

1990, p. 31). Different kinds of intervals include 

those with two and three points. (Two of which are 

stable and one of which is unstable). This type of 

split is known as a "pitchfork bifurcation."The 

equation exhibits a pitchfork bifurcation. Pitchfork 

bifurcation is a type of bifurcation that occurs in a 

system with only one dimension when the system 

has left-right symmetry. In this kind of system, 

fixed points frequently come into existence or 

vanish in pairs. Take, for example, a system that 

only consists of one dimension 

( ) 3,f x x x x = − +
                                   

(35) 

Replacing x by –x in (35), it contains that 

( ) 3,f x x x x − = − + −  

( )3x x x= − − +  

( ),f x = −  

For this reason, applying transformation 

( ) ( ), ,f x f x − = −  to the system has no 

effect on its overall geometry. The equilibrium 

points of the system can be found by using the 

following formula:  

( ), 0f x  =
 

3 0x x x − + =
 

( )2 1 0x x − + =
 

Either 0x =    or 
2 1 0x − + =  

2 1x − = − −  

2 1x  = +  

1x  =  +  

Now ( ) 3,f x x x x = − +
 

2

, 3 1x

f
x

x
 

 
= − +    

0, 1
f

x
 

 
= +  
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( ) ( ) 2

1,
3 1 1

f

x  
 

 +

 
= −  + +  

 

( ) ( )
1,

3 1 1
f

x  
 

 +

 
 = − + +    

( )1,
3 3 1

f

x  
 

 +

 
 = − − +    

( )1,
2 2

f

x  


 +

 
 = − −  

 

( ) ( )
1,

2 1
f

x  


 +

 
 = − +    

 
  

( ) 0a  
 

( ) 0b  =
 

( ) 0c  
 

Fig. 6 Phase diagram for (a) 0,   (b) 0, = and (c) 0  of the equation (35). 

When 0 = , x* only equals zero at one point in 

the system, which also happens to be where 

( )0, 0
0

x

f

x
= =

 
=  

 in nature. If 0,   then 

there will be three equilibrium points at

* 0, 1x =  + . The origin of the equilibrium 

points ( * 0x = ) is an unstable source, while the 

other two equilibrium points are stable sinks. If

0,  there is only one stable equilibrium point 

for the system, and it is at the origin. Figure 

6depicts the phase diagram in the f −  plane. 

Supercritical case 

The fundamental outline of the supercritical 

pitchfork can be described in the following manner, 

which is provided by the symbol for the third 

derivative in the equation containing the number 

(36). 

3

0, 03
0x

f

x
= =

 
 

 
                          (36)

 

Fig. 7 Pitchfork supercritical bifurcation for the 

one-dimensional system (35). 

When   goes from being negative to being zero, 

the diagram shows that the equilibrium point origin 

remains stable, albeit in a manner that is 

significantly less robust due to the fact that it is not 

hyperbolic. This is something that we can see for 

ourselves by looking at the diagram. When   is 

greater than zero, the origin, which was formerly a 

point of stable equilibrium, changes into a point of 

unstable equilibrium, and two new points of stable 

equilibrium appear on either side of the origin, at 

1x = − +  and 1x = + , respectively. 
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When  less than zero, the origin remains a point 

of stable equilibrium. To take a look at the 

bifurcation diagram of the system that is depicted in 

Figure 7. The pitchfork-shape bifurcation diagram 

elucidates the meaning of the word "pitchfork" in a 

way that is both concise and comprehensive. On the 

other hand, one could consider it to be a bifurcation 

of the system similar to a pitchfork. It is the 

existence of this vector field that causes this 

bifurcation to occur, and it is commonly referred to 

as a supercritical pitchfork bifurcation. This type of 

bifurcation takes place when an equilibrium that is 

stable breaks up into two separate equilibriums that 

are also stable. 

Subcritical case 

The fundamental outline of the subcritical pitchfork 

can be described in the following manner, which is 

provided by the symbol for the third derivative in 

the equation containing the number (37). 

3

0, 03
0x

f

x
= =

 
 

                                             

(37) 

Take, for example, a system that only consists of 

one dimension 

( ) 3,f x x x x = + +
                                   

(38) 

Replacing x by –x in (38), it contains that 

( ) 3,f x x x x − = − − −  

( )3x x x= − + +  

( ),f x = −  

For this reason, applying transformation 

( ) ( ), ,f x f x − = −  to the system has no 

effect on its overall geometry. The equilibrium 

points of the system can be found by using the 

following formula:  

( ), 0f x  =
 

3 0x x x + + =
 

( )2 1 0x x + + =
 

Either 0x =    or 
2 1 0x + + =  

2 1x  = − −  

2 1x  = − −  

1x  =  − −  

Now ( ) 3,f x x x x = + +
 

2

, 3 1x

f
x

x
 

 
= + +    

0, 1
f

x
 

 
= +  

 

( ) ( ) 2

1,
3 1 1

f

x  
 

 − −

 
= −  − − +  

 

( ) ( )
1,

3 1 1
f

x  
 

 − −

 
 = − − − +    

( )1,
3 3 1

f

x  
 

 − −

 
 = + + +    

( )1,
4 4

f

x  


 − −

 
 = +  

 

( ) ( )
1,

4 1
f

x  


 − −

 
 = +    

 

Fig. 8 Pitchfork subcritical bifurcation for the one-

dimensional system (35). 

This system has three equilibrium points, which are 

denoted by the symbols * 0, 1x =  − −  for 

0.  The equilibrium point * 0x =  is stable, 

whereas the other two equilibrium points are 

unstable. When p is greater than zero, there is only 
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one possible point of equilibrium * 0x = , and it is 

an unstable one. 

 

Fig. 9 A pitchfork bifurcation of the equation (35) 

by orbit diagram for arbitrary value of x  and .  

4.1(a) Regarding the equation (35), the pitchfork 

bifurcation can be written in its normal form. 

In the event that we presume the system (1) has a 

point of equilibrium at 0x x=  for 0 =  in a 

region where the pitchfork bifurcation requirements 
are satisfied from the equation (28), (29), (30), (31), 
(32) (33), and (34) then this would suggest that the 
point of equilibrium is situated at a pitchfork. The 
result that we get when we extend the function 

( ),f x   in a Taylor series in the area surrounding 

the point ( )0 0,x   is as follows: 

( ),x f x =
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

0 0 0 0

0 0

0 0 0 0

2
2

0 0 0 0 0 0 0, , 2

2 2
2

0 0 0 0 0, 2

3 3
23

0 0 0, ,3

3
2

0 0 2

1
, ,

2!

1
,

2!

1 1

6 2

1

2

x x

x

x x

f f f
f x x x x x x

x x

f f
x x x

x

f f
x x x x

x x

f
x x

x

 



 

   


    
 

 


 


     
= + − + − + −           

    
− − + − +   

     

    
− + − − +   

     


− −

  ( ) ( ) ( )0 0 0 0

2
3

0, ,2

1
...

6
x x

f
 

 


   
+ − +   

   

Using the conditions of (28), (29), (30), (31), (32) 

(33), and (34) the above equation contains

 

( ),x f x =
 

( )( ) ( ) ( ) ( )
2 3

3

0 0 0 0 0 0 03

1
, , ...

6

f f
x x x x x x

x x
   



    
= − − + − +   

       

(39)

From the system (35) 

( ) +−= xxxxxf ;, 3
                        

(40) 

Differentiating (40) with respect to x  

( ) 2

0 0, 3 1
f

x x
x

 
 

= − +                          

(41)   

Differentiating (41) with respect to x  

( )
2

0 02
, 6

f
x x

x


 
= − 

 
 

( )
3

0 03
, 6

f
x

x


 
= − 

 
 

  [Taking 0 0x = and 1 = − ] 

( )
3

3
0, 1 6

f

x

 
− = − 

 
 

Differentiating (41) with respect to   

( )
2

0 0, 1
f

x
x




 
= 

  
 

   [Taking 0 0x = and 0 1 = − ] 

( )
2

0, 1 1
f

x 

 
− = 

  
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Putting the above values from (39) we get, 

( ),x f x =  

( )( ) ( ) ( ) ( )
2 3

3

3

1
0 1 0, 1 0 0, 1 ...

6

f f
x x

x x




    
= − + − + − − +   

     

( ) ( )
31

1 1 6 ...
6

x x= +  + − +  

( ) 31
1 ...

6
x x  = +  + +

                          

(42) 

In this equation, both ( )
2

0, 1 1
f

x




 
= − = 

  
 

and ( )
3

3
0, 1 6

f

x


 
= − = − 

 
are assumed to be 

non-zero real numbers. The term "normal form" of 

the pitchfork bifurcation is what the equation (42) 

is referring to when it makes its reference to the 

phenomenon. This gives a substantial advantage 

when trying to establish the bifurcation that a 

system goes through, since it helps to narrow down 

the possible outcomes. 

5. Conclusion 

For saddle node bifurcation, depending on the value 

that assigns to the parameter ,  there are three 

possible outcomes that are capable of taking place. 

When  is non-zero, the system has two fixed 

positions that it can always return to. If   is less 

than zero, then they are combined together; 

however, if   is more than zero, then they are 

eliminated. The dynamics of such a fundamental 

system are fascinating despite their seeming 

simplicity. The dynamics underwent a bifurcation 

at 0=  due to the inherent incompatibility of the 

0  and 0  vector fields. The bifurcation 

point, or turning point of the trajectory, is the 

location along the trajectory at which the parameter 

  equals 0. In the bifurcation diagram, we can see 

how   is related to the fixed point of the 

system.During transcritical bifurcation, the origin, 

which is a sink (stable) for 0=  and a source 

(unstable) for 0 , generates two separate 

equilibrium positions 1,0 += x for 0 . In 

contrast, the equilibrium at 1+= x  is unstable 

when 0  but stable for 0= . If 0 , then 

pitchfork bifurcation occurs, where there are three 

equilibrium points * 0, 1x =  + . In contrast 

to the two sinks at the other equilibrium points, the 

origin ( * 0x = ) is a source of potential instability. 

The only location where equilibrium may be 

achieved when  is less than zero is the origin.As 

shown by the pitchfork bifurcation diagram, the 

term "pitchfork" can be defined both succinctly and 

exhaustively. It's possible, though, that the system 

is bifurcating in a pitchfork shape. Pitchfork 

bifurcations at the subercritical point are triggered 

by this vector field. For 0 the equilibrium 

point * 0x =  is stable, whereas the other two 

equilibrium points are unstable. 
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