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ABSTRACT 

A numerical study is carried out to demonstrate the heat transmission events of 3 4 2Fe O -H O  

nanofluid in a square cavity saturated by aluminum foam porous medium under the effect of 

slanted periodic magnetic field. The cavity wall is heated from left and cooled from right while 

horizontal walls are supposed to be adiabatic. The Brownian motion of nanoparticle is taken 

into consideration in the thermal conductivity model construction. The dimensionless 

governing equations including Darcy-Brinkman model are solved by Galerkin-FEM. The 

outcomes are exposed with depictions of streamlines, isotherms and average Nusselt numbers. 

The numerical investigation is performed for parameters: Darcy number, Rayleigh number, 

Hartmann number, porosity, leaning angle of the periodic magnetic field, period number, and 

nanoparticle volume fraction. The heat transfer rate upsurges noticeably for the rise of 

nanoparticle volume fraction, period number, Darcy number and Rayleigh number but the 

reverse trend is found for the parameter Hartmann number as well as porosity. From the 

acquired numerical outcomes, the maximum rate of heat transfer is attained at 10,Ha =  

/ 4 =  when 1. =  
 

Keywords: Nanofluid, Brownian motion, Finite element method, Porous medium, Darcy-brinkman model 
 

1. Introduction 

Heat transfer (HT) in conventional fluids (oil, 

ethylene glycol and water) have poor thermal 

conductivity (TC) that has limitation to enhance the 

thermal presentation and the compactness of 

various engineering electric instruments. Hence, in 

order to develop an advanced HT fluid, (Choi 1995) 

first introduced the concept of nanofluids (NFs) 

which have various engineering and industrial 

applications. The suspension of the solid 
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nanoparticles (NPs) into the conventional base 

fluids (BFs) significantly upsurges the TC and thus 

enhances the thermal performance characteristics. 

Due to many engineering applications, convective 

HT of nanofluids inside different shape of cavities 

have extensively studied by many researchers 

(Tiwari and Das 2007, Rahman et al. 2011, Celli 

2013, Al Kalbani et al. 2016, Alam et al. 2022) 

worth mentioning. 

         Free convective HT and fluid in cavities 

occupied with NF-drenched porous medium (PM) 

performs an imperative part in numerous 

manufacturing uses including geothermal case, 

ground water contamination, thermal energy 

storing, crude oil extraction, flow via filtering 

medium, etc. Illustrative exploration in the field of 

PM can be originate in (Ingham and Pop 2005, 

Nield and Bejan 2013), etc. Due to the huge surface 

area, PM is appropriate as insulators and HT 

organizers in diverse engineering systems. Thus, 

competent use of such material desires a careful 

study for modeling energy and momentum 

transport. There are numerous momentum models 

for fluidic flow through a PM. The Darcy model, 

that accepts relationship between the pressure 

gradient and velocity, has been widely accustomed 

to inspect a number of fluid and HT cases with hot 

bodies attached in NF-drenched PM. This model is 

valid for weak flows over PM with poor 

permeability (Nakayama et al. 1990). For advanced 

flow rate or in highly PM, there is an exit case 

developed from the linear law and inertial effects. 

For a typical particle diameter, it revealed that the 

flow converts non-Darcian when the Reynolds 

number surpasses unity (Bear 1972). These 

departures are supposed to be due to flow 

separation inside the PM, while numerically 

creating itself as a nonlinear term in the velocity, 

pressure-gradient connection. (Muskat 1946) 

included a velocity and Forchheimer expressions to 

account for the PM inertia impacted on the pressure 

profiles, when (Brinkman 1947) a viscous diffusion 

term is pondered for the boundary frictional drag 

case. 

Because of the importance of magnetic field (MF) 

on the flow field, several scholars (Al-Zamily 2014, 

Al Kalbani et al. 2016, and Sheikholeslami 2018) 

studied convective flow and HT of NF inside a 

cavity in the existence of a MF. The literature 

investigation linked to magnetohydrodynamic 

disclosures that a momentous number of 

researchers measured uniform MF effect in the flow 

field. However, the influences of oscillating MF on 

the natural convection (NC) flow in enclosures 

have received very little attention, though this 

occurrence seems in induction approach based 

magnetic pumps, and generators. (Turcotte and 

Lyons 2006) showed that for a high value of the 

MF interaction parameter, the oscillating MF limits 

the viscous forces inside the flow field. Besides, for 

the presence of a weak MF, the inertial boundary 

layer thickens the upstream flow direction. (Siddiqa 

et al. 2017) examined the effects of particles’ 

micro-rotation behaviors during the macroscopic 

and microscopic level flows in the existence of a 

periodic MF. They informed that the HT rate is 

insensitive with the increase of the MF parameter. 

(Mehryan et al. 2018) studied influences of periodic 

MF on NC and entropy generation inside a quadrate 

cavity using ferrofluids. In their simulation, they 

noted that HT is advanced due to the oscillating MF 

linked to the uniform field regardless of the values 

of the Ha and the MF period. 

 Above mentioned literature shows that the natural 

convective HT and fluid flows in a four-sided 

cavity occupied with a PM saturated by a magnetic 

NF in the presence of inclined periodic MF using 

the NF models planned by (Tiwari and Das 2007, 

Celli 2013) has not been inspected so far. So, the 

aim of this study is to explore NC within a four-

sided porous cavity adopted more accurate 

experimental correlations for the physical 

properties of the NFs (such as heat capacitance, TC 

and thermal diffusivity). The solid phase of the PM 

is set as AF. Particular exertions have been 

emphasized on the impacts of the Darcy number, 

the Rayleigh number, the solid VF factor, and the 

porosity of the PM on flow arena, temperature 

delivery, Nu, streamlines and isotherms.  

2. Methods 

2.1. Physical model description 

An inclined periodic MF is attributed on an 

unsteady, incompressible, laminar, 2D convective 
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flow of 3 4Fe O -Water  NF in a four-sided cavity 

saturated by aluminum foam porous medium of 

length L as publicized in Fig.1. We assume that the 

PM is homogeneous and isotropic. The four-sided 

cavity surfaces are measured as fixed and NC has 

been initiated by making temperature variances 

between cold and heated surfaces. The inclined 

periodic MF depends on the x and y coordinate 

systems and this relation is stated as 

0
0

2π
B=B sin[ (xcos +ysin )]

λ
  ,where 0  the 

dimensional period, 0B amplitude and   the 

inclination angle of the inclined periodic MF 

respectively. The left wall of the cavity is uniformly 

heated at temperature ( )hT T= , whereas the right 

wall is cold at lower temperature ( )cT T=  and other 

two horizontal walls are adiabatic. The thermal 

equilibrium case exists among the BF, 

nanoparticles and porous medium, and no slip case 

occurs among them. In the thermal radiation of 

flow domain, viscous dissipation and any chemical 
 

  

Fig.1: Physical geometry. Fig. 2: Mesh geometry including 6282 elements. 

 

Table-1. Thermal properties of the BF, nanoparticle and porous matrix (Sheremet et al. 2015, Alam et al. 

2022) 

BF/ 

Nanoparticle/

Porous matrix 
( / )

pc

J kgK
 3( / )kg m


 

( / )

k

W mK

 

510

(1/ )K

 −
 2( / )Ns m


 ( / )S m


 Pr 

Water 4179 997.1 0.613 21 0.001003 65.5 10−  6.837 

Aluminum 

foam (AF) 
897 2700 205 -     -    -    - 

3 4Fe O  670 5180 80.4 20.6     - 60.112 10    - 

reactions are ignored. The gravitational acceleration 

g acts in the downwards direction and the Brownian 

motion (BM) effects are included in the flow 

domain. All side walls are taken to be rigid walls.  

2.2. Mathematical model 

Based on the above stated directions and taking into 

attention the Darcy-Brinkman model for transport 

phenomena in PM, the dimensional governing 

equations are as follows (see also Nield and Bejan 

2013, Al-Waheibi et al. 2021): 

Continuity equation: 

0
u v

x y

 
+ =

 
                                                     (1) 
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Momentum equations: 

( )
0

2 2

2 2

2

0 2 22

0

sin [ cos sin )]( sin sin cos

nf nf

nf

nf

p u u
u

x K x y

B
x y u v



 




    



   
= − − + + 

   

− + −

  (2)  

( ) ( )

( )
0

2 2

2 2

2

0 2 22

0

                    - sin [ ( cos sin )] cos sin cos

nf nf

Cnf

nf

nf

p v v
v g T T

y K x y

B
x y v u



 





    



   
= − − + + + − 

   

+ −

            

 (3) 

Energy equation: 
2 2

2 2
( ) ( ) ( )p m p nf m

T T T T T
c c u v

t x y x y
  

     
+ + = + 

     
 

(4) 

2.3. Initial and Boundary conditions 

For 0t = , 

 whole domain: 0, 0, , 0cu v T T p= = = =                  (5a) 

For 0t  ,  

At the left hot wall: 0, 0, hu v T T= = =                    (5b) 

At the top and bottom insulated walls:    

0, 0, 0
T

u v
y


= = =


                                             (5c) 

At the right cold wall: 0, 0, cu v T T= = =             (5d) 

 

2.4. Thermal and physical properties 

For the present problem, effective heat 

conductance, effective thermal conductivity, 

viscosity, density, thermal diffusivity, heat 

capacitance, electrical conductivity, thermal 

expansion coefficient and thermal conductivity of 

nanofluid have been taken into consideration 

respectively as follows (see Rahman et al. 2021): 

( ) (1 )( ) ( )p m p s p nfc c c    = − +    (6) 

(1 )m s nf   = − +                             (7) 

( )
2.5

1

bf

nf





=

−
  (8) 

(1 )nf sp bf    = + −                             (9) 

( )

nf

nf
p nfC





=   (10) 

( ) ( ) (1 )( )p nf p sp p bfc c c    = + −        (11) 

2 2( )

( 2 ) ( )

p bf p bf

nf bf
p bf p bf

    
 

    

+ + −
=

+ − −
  (12) 

( ) ( ) (1 )( )nf sp bf    = + −   (13) 

( ) ( ) ( )
( ) ( )

1 1 ( ) 2

321

sp bf bf sp p sp T B ref

nf bf l

nf pTsp bf bf sp

n n c D k T

dDn

      
 

    

 + − − − −
 = +

+ − + −  

       

( ) ( ) ( )
( ) ( )

1 1 ( ) 2

321

sp bf bf sp p sp T B ref

nf bf l

nf pTsp bf bf sp

n n c D k T

dDn

      
 

    

 + − − − −
 = +

+ − + −  

       (14) 

where,

(0.0002 0.1537)
0.126 ,

nf bf nf p l

T T T

bf nf

d
D D D

  

 

+
= = and

refT is the reference temperature. In the above eq 

(14), the last term on the R.H.S. is due to the 

Brownian motion of the NPs. Brownian motion is a 

result of the collisions (due to random motion) of 

the NPs that are suspended in the BF and it is taken 

into the TC correlation in eq (14) which is related 

to eq (4) through eq (7). 

All the symbols name and the interrelated quantities 

are given in the nomenclature. 

2.5. Non-dimensional analysis 

To describe numerous transport manifestations in 

NFs, the governing equations transformed into 

dimensionless form with help of the governing flow 

constraints. The following dimensionless governing 

equations (16)-(19) are created, accordingly, by 

including the dimensionless variables in (15) into 

the dimensional equations (1)-(4). 

2

2

0

2

, , U = , V = ,  P =  ,

 = , , , ,

bf bf bf bf

bf bfC

bf

h C bf

x y uL vL pL
X Y

L L

tT T a
A

T T L LL

   

  
   




= = 




− = = = =
− 

 (15) 
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0
U V

X Y

 
+ =

 
                                                        (16) 

( )

2 2

2 2

2 2 22

PrPr
0

Pr sin [ ( cos sin )] sin cos sin

nf nf

bf bf

nf

bf

P U U
U

X Da X Y

Ha X Y U V


 

  


    



   
= − − + + 

   

− + −

  

 

(17)

( )

2 2

2 2

2 2 22

Pr ( )Pr
0 Pr

( )

Pr sin [ ( cos sin )] cos cos sin

nf nf nf

bf bf bf

nf

bf

P V V
V Ra

Y Da X Y

Ha X Y V U


  


   


    



   
= − − + + + 

   

− + −

  (18)

 
2 2

1 1 2 2
A U V B

X Y X Y

    



     
+ + = + 

     
        (19) 

where, 1 (1 )A   = − + , 1 1

1 nf

bf

B



 

−
= + , 

 
( )

( )

p s

p nf

c

c





= , 

( )
,

( )

p nf

p bf

c

c





=  1 ,s

bf





=  Pr

bf

bf




= ,  

( ) 3

bf h c

bf bf

g T T L
Ra



 

−
= , 0

bf

bf

Ha B L



= ,  

2

K
Da

L
= . 

For 0 = , 0, 0, 0, 0U V P= = = =                   (20a) 

 For 0  , the dimensionless boundary settings 

(5b) - (5d) become, 

At the left hot wall: 0, 0, 1U V = = =     (20b)  

At the top and bottom insulated walls: 

0, 0, 0U V
Y


= = =


  (20c) 

At the right cold wall: 0, 0, 0U V = = =           (20d) 

3. Heat transfer parameters 

 The dimensionless version of the convective HT 

coefficient is known as the Nusselt number (Nu), 

which is introduced by German engineer Wilhelm 

Nusselt (1882-1957). The HT rate is evaluated by 

the local and average Nu at the left heated wall that 

are evaluated as follows: 

The local Nu on the heated wall can be written as 

  
0

nf

L

Xbf

Nu
X

 

 =

 
= −  

 
                                      (21a)  

The average Nu at the heated wall can be written as 

 
1

0

ave LNu Nu dY= 
        

(21b) 

4.1. Numerical methodology 

The dimensionless transport equations (16)-(19) 

with the boundary settings (20a) - (20d) are 

elucidated numerically by using Galerkin-FEM. 

The particulars of this technique can be found in the 

former reports (Rahman et al. 2009, 2011; 

Zienkiewicz and Taylor 1991). Briefly, the entire 

solution domain is discretized into non-uniform 

triangular shape finite element meshes. Six node 

triangular shape elements are chosen to formulate 

the finite element equations. All six nodes are allied 

with velocities, and temperature; the corner nodes 

are related with pressure. A lower order polynomial 

is selected for pressure, which is satisfied through 

the continuity equation. Then the nonlinear model 

equations are shifted into a system of integral 

equations by applying Galerkin weighted residual 

technique. The integration involved in each term of 

these equations is performed by using Gauss's 

quadrature technique. The resultant algebraic 

equations are improved by imposition of boundary 

conditions. To solve the set of the universal 

algebraic equations in the form of matrix, the N-R 

iteration procedure has been adapted through PDE 

solver with In-house code. The convergence 

criterion of the numerical solutions along with error 

guesstimate has been set to be 1 510m m+ − −   , 

where { , , }I U V   and m  is the iteration number.  

4.2. Grid statistics 

To fix the suitable grid size, a grid independent 

examination is guided taking 0.02, 10,Ha = =  

3 6

6
10 , 0.8, 10 , , 0.10, 3, 10 , 0.1, 6.8377.pDa Ra n d nm Pr   −= = = = = = = = =, 10 ,pd nm=

 
3, 0.1, 6.8377.n Pr= = =
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Table-2. Grid information for 3 4 2Fe O -H O

nanofluid with AF porous medium. 

Mesh 

name 

Fine Finer Extra 

Fine 

Extremely 

Fine 

No. of 

Elements 

928 1856 6282 24912 

No. of 

Nodes 

503 983 3242 12657 

aveNu  110.38 110.51 110.61 110.62 

In the current work, four dissimilar non-uniform 

grid systems with the total number of elements 

inside the flow field: 928, 1856, 6282 and 24912 

are scrutinized. The numerical design is assembled 

for extremely precise key in the aveNu  for the 

aforementioned elements to mature an 

understanding of the grid fineness as found in 

Table-2. The aveNu  for 6282 elements 

demonstration a very small variance with the 

outcomes found for the 24912 elements. So, the 

grid size of 6282 and 24912 elements is adopted to 

obtain the precise outcomes. In this current study, 

herein chosen 6282 triangular elements to solve the 

nanofluid flow model for the well convergent 

solution.  

4.3. Code justification 

This current model has been authenticated in the 

absence of NPs, and this study is constrained to the 

study of water in a four-sided porous cavity for 

steady-state natural convection with isothermal 

vertical and insulated horizontal walls. Thus, to 

check the legitimacy of this current technique and 

code, the computed 
aveNu  for three different values 

of Rayleigh numbers have been shown in Table-3 

for some relative data with those described by 

(Walker and Homsy 1979, Manole and Lage 1992, 

Baytas and Pop 1999, Sheremet et al. 2015). These 

validations encouraging the sureness in the 

numerical result of our current study. 

Table-3. Comparison of the 
aveNu  at the left heated wall.  

Authors 210Ra =  Error (%) 310Ra =  Error (%) 410Ra =  Error (%) 

Walker and Homsy (1979) 3.097 0.71 12.96 7.77 51.0 3.97 

Manole and Lage (1992) 3.118 0.03 13.637 2.42 48.117 1.78 

Baytas and Pop (1999) 3.16 1.29 14.06 0.66 48.33 1.33 

Sheremet et al. (2015) 3.115 0.13 13.667 2.19 48.823 0.31 

Present results 3.119  13.967  48.972  

 
5. Results and discussion 

This section, the gotten outcomes are scrutinized to 

inspect the effects of slanted periodic MF strength 

of the square cavity filled with  3 4 2Fe O -H O  NF 

with AF porous medium having uniform thermal 

boundary condition at the left heated wall. Thus, for 

Fe3O4-Water NF and AF porous medium, the 

values of heat capacitance ratios and TC ratios are 

calculated as 0.58318, =  0.99666 =  and 

1 334.42 =  with these calculated results and for 

porosity 0.8, = the values of 1 0.91664A = , and 

1 68.374B =  have been picked into the numerical 

simulation for 3 4 2Fe O -H O  NF. Calculations are 

made for various values of the pertinent parameters 

including periodic MF inclination angle, period of 

the MF, Darcy number, Rayleigh number, NP VF, 

and porosity of the PM on flow and thermal field. 

The outcomes are displayed in the form of 

streamlines and isotherms decorations to display 

the flow and thermal arenas. Furthermore, the 

variant of aveNu  at the left heated wall for different 

model parameters is also decorated in line graphs as 
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well as tabular form. The main focus of the results 

is to obtain a clear idea of the HT regarding 

3 4 2Fe O -H O nanofluid with AF porous medium 

filled square cavity for industrial uses. 

Fig.3a and Fig. 3b respectively display the 

streamlines, and isotherms evolutions for different 

values of  for AF porous medium, when 

0.001, 0.02, 0.8,Da  = = = 10,Ha =
610 ,Ra =

6
0.10, , 3, 10 .pn d nm = = = =  From Fig.3a and  

Fig.3b, it is observed that when 0.1 = , there are 

no significant changes in the streamlines and 

isotherms for 0.1  , which means that the 

solution reaches to the steady state.   

    

0.01 =  0.08 =  0.1 =  0.2 =  

Fig. 3a. Streamlines evolutions for different values of  for AF porous medium, when 0.02, =

610 ,Ra =
6

0.001, 0.10, , 3, 0.8, 10 ,pDa n d nm  = = = = = = 10.Ha =  
 

 

    

0.01 =  0.08 =  0.1 =  0.2 =  

Fig. 3b:  Isotherms evolutions for different values of  for AF porous medium, when 0.02, =  

610 ,Ra =
6

0.001, 0.10, , 3, 0.8, 10 ,pDa n d nm  = = = = = = 10.Ha =  

The joint effects of Ha and Da for 
-4 -3 -2Ha=1,10,30;Da=10 ,10 ,10 on the streamlines 

and isotherms are presented in Fig.4a and 4b, 

respectively. There seems one big clockwise 

rotating vortex within the enclosure for all the 

cases. But they look scrawny and weak. The eye of 

revolutions is positioned near the center of each. 

The buoyancy-driven rotating flows inside the 

cavity are obvious for all values of the Ha and Da. 

The streamlines are distorted meaningfully 

indicating a weak buoyancy driven flow. It is also 

gotten that the strength and compactness of the 

streamlines are augmented with the increment of 

Da. But the strength and compactness of the 

streamlines are decreased very slow with the 

increment of Ha. To show the physical insight of 

the fluid flow rotation more precisely, it is 

imperative to evaluate the optimum surface 

velocity, as it specifies the flow circulation within 
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Ha           
410Da −=          

310Da −=           
210Da −=  

 

 

 

 

1 

   

max( , )U V =  (30.363,30.236) max( , )U V =  (231.70,233.85) max( , )U V =  (791.11,890.86) 

 

 

 

 

10 

   

max( , )U V =  (28.909,21.386) max( , )U V =  (156.66,132.47) max( , )U V =  (304.97,341.81) 

 

 

 

 

30 

   

max( , )U V =  (23.151,17.267) max( , )U V =  (76.570,88.958) max( , )U V =  (108.27,133.91) 

Fig.4a: Streamlines for different values of &Ha Da  for AF porous medium, when 0.02, 0.8, = =

610 ,Ra =
6

0.10, , 3, 10 , 0.1.pn d nm  = = = = =  

   the cavity. So, we have evaluated the optimum 

surface velocity (U, V) for all the cases. It is 

obvious from the figures that the highest values of 

the optimum surface velocity is 
max( , )U V =  

(791.11, 890.86) which is obtained for Ha =1 and 
210Da −= . 

The isothermal contours of Ha and different Da are 

presented in Fig. 4b. The Ha shows very low effect 

on the isotherms. Figure shows that isotherms are 

closer to one another nearby the hot surface of the 

enclosure. So, the temperature difference at the 

enclosure near the heated wall is greater than cold 
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410Da −=         

310Da −=         
210Da −=  
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Fig.4b: Isotherms for dissimilar values of &Ha Da  for AF porous medium, when 

60.02, 10 ,Ra = = 6
0.10, , 3, 0.8, 10 , 0.1.pn d nm   = = = = = =  

 wall, which reproduces higher HT at the left 

partition of the cavity. For
410Da −= and as the Ha 

rises the isotherms lines are converted to parallel 

each other, which is a clear sign that convection to 

conduction as the mode of HT. Behavior of 

isotherms for Ha are almost similar, whereas for 
3 210 ,10Da − −=  behave differently and the 

convection is the dominant mode of HT. 

The distribution of aveNu  versus the Ha for 

dissimilar values of Da along the left heated wall 

are displayed in Fig.5a, when
610 ,Ra =  0.02, =

6
, 10 ,pd nm = = 0.8, 0.10, = = 3,n = 0.1. =  

From this figure we perceive that the aveNu  rises 

with the increment of the Da and decreases with the 

increment of the Ha. A high Da corresponds to a 

strong buoyancy force that means providing more 

thermal energy to the system. So, the HT rate from 

the left heated wall to the cavity upsurges. We can 

say that both the Ha and the Da play a momentous 

role on the HT analysis. The distribution of aveNu  

versus the Ha for dissimilar values of   along the 

left heated wall are displayed in Fig.5b, when
0.10, =

6 310 , 0.02, 10 , 10 ,pRa Da d nm −= = = = 6
, =

3, 0.1.n = =  From this figure we observe that the 

aveNu  decreases with the augmentation of  and 

Ha. So, the HT rate from the left heated surface to 
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the cavity decreases. we can say that both the Ha 

and the   play a noteworthy role on the HT 

analysis. From the definition of Ha, we see that it 

represents the ratio of magnetic force (Lorentz 

force) to viscous force. Thus, for advanced values 

of Ha (Ha>50 for the present study) indicates 

higher values of Lorentz force that slow down 

 

  

Fig. 5a. Distribution of aveNu versus Ha , Da. Fig. 5b. Distribution of aveNu versus Ha,  . 

 the velocity of the NF within the cavity. 

Consequently, conduction mode of HT is dominant 

for Ha>50 whereas the convection mode of HT is 

dominant for Ha<50 as observed in Figs. 5a and 

Fig. 5b. 

Table-4, illustrates the variation of aveNu  along 

left heated wall for the combined effects of   and 

  for dissimilar values of Ha. From this table it is 

evident that the aveNu  and HT rate diminutions 

with the upsurge in Ha. Moreover, aveNu  rises 

with the growing value of   and strongly depends 

on the  . This means that the variation of the

aveNu  in terms of   and  changes by MF 

orientation. It is also noticed from this table that the 
highest thermal performance is achieved at an 

inclination angle 
4

, 1 = =  and Ha=10. 

Therefore, we may say that both the inclination 
angle as well as period of the MF play a 
momentous role on the HT analysis. 

Table-4. Variation of aveNu on the left heated wall for dissimilar Ha,δ  and  when 6Ra=10 ,

0.02, 0.8, 0.001, 10 , 0.1.pDa d nm  = = = = =  

Ha   aveNu  

0.10 =  0.25 =  0.50 =  0.75 =  1 =  

10 0 109.95 114.74 117.67 118.52 118.85 

6
  110.60 115.41 117.97 118.67 118.94 

4
  110.74 115.59 118.05 118.71 118.96 

3
  110.69 115.46 117.99 118.68 118.94 

2
  109.98 114.69 117.63 118.49 118.83 
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20 0 108.32 110.91 114.74 116.69 117.67 

6
  108.58 111.65 115.41 117.14 117.97 

4
  108.63 111.82 115.59 117.27 118.05 

3
  108.63 111.74 115.46 117.17 117.99 

2
  108.33 110.93 114.69 116.64 117.63 

30 0 107.99 109.34 112.42 114.74 116.19 

6
  108.11 109.89 113.21 115.41 116.71 

4
  108.13 110.00 113.40 115.59 116.85 

3
  108.13 109.97 113.28 115.46 116.74 

2
  108.00 109.37 112.41 114.69 116.14 

Table-5, illustrates the aveNu  (with/without 

Brownian effect) along left heated surface for 

dissimilar values of Ra and , when 10,Ha =

3

6
0.8, 10 , , 3, 0.10,Da n  −= = = = = 10 ,pd nm=  

0.1. = All the result so gotten are considering the 

BM effect on the nanofluid TC, nf , as well-

defined in eq.14. It is clear that the BM recognizes 

a remarkable part in augmentation of the 

temperature delivery rate. The input of BM is 

exposed the NPs activity within the neighborhood 

which is enhancement the fluid temperature and 

micro convection sorts. Thus, a comparison study is 

achieved for the increment of the aveNu  and gotten 

from the tabular outcomes that the impact of   on 

the aveNu  more momentous for both cases with or 

without BM. For example, when BM is taken into 

consideration, the aveNu  increases 59.36% at 

610Ra = with 0.02 = and the aveNu  increases 

6.52% for the other case. 

 

Table-5: Average Nusselt number (with/without Brownian effect) along left hot surface for dissimilar 

values of Ra and  when 10,Ha = 10 , 0.10,pd nm = = 0.8, =
3

6
10 , ,Da −= = 3, 0.1.n = =  

 

Ra  

 

  
aveNu  

With Brownian effect Increase (%) Without Brownian effect Increase (%) 

410  0 67.684 - 67.684 - 

0.005 77.791 14.93 68.751 1.58 

0.01 87.844 29.79 69.830 3.17 

0.015 97.845 44.56 70.921 4.78 

0.02 107.79 59.25 72.024 6.41 
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510  0 67.701  67.701  

0.005 77.811 14.93 68.768 1.58 

0.01 87.867 29.79 69.848 3.17 

0.015 97.870 44.56 70.939 4.78 

0.02 107.82 59.26 72.043 6.41 

610  0 69.402 - 69.402 - 

0.005 79.781 14.95 70.515 1.60 

0.01 90.108 29.83 71.640 3.22 

0.015 100.38 44.64 72.777 4.86 

0.02 110.60 59.36 73.926 6.52 

6. Conclusions  

The analysis of NC transient flow of 3 4 2Fe O -H O  
nanofluid in a square shape cavity filled with AF 

PM having uniform thermal boundary settings in 

presence of inclined periodic MF has been 

inspected numerically for the accepting of HT 

approaches and rates. The results of thermo-fluid 

flow behaviors are displayed graphically with 

streamlines, isotherms and aveNu . The aveNu  is 

displayed by tables and line graphs. Major findings 

are as follows: 

1. The solution reaches to steady state for 

0.1 =  in the present investigated Darcy-

Brinkman mathematical nanofluid model. 

2.  For  1Ha = and 
210Da −= , surface 

velocities are maximum, indicates strong 

flow of NF inside the cavity. 

3. Conduction is the approach of HT for lower 

value of Da and higher value of Ha. 

4. The aveNu  of 3 4 2Fe O -H O  NF rises 

significantly for the upsurge of NP volume 
fraction, period number, Da and Ra. 

5. The aveNu  of 3 4 2Fe O -H O NF due to the 

augmentation of MF leaning angle is not 
monotonic.  

6. As magnetic field parameter Ha as well as 

porosity decrease, aveNu increases remarkably. 

7. The highest rate of HT is achieved at Hartmann 
number 10,Ha = MF inclination angle 

/ 4 =  when period number  =1.  

8. When BM of the NPs is taken into discretion 
of the thermal conductivity model, the HT rate 

is increased 59.36% at 
610Ra = with 0.02 =  

whereas the corresponding increase is 6.52% 
for the case of without BM. 

Nomenclature ave Average 

0B  MF strength [Nm−1A−1] bf Base fluid 

pc  Specific heat [Jkg-lK-1] c Cold 

TD  Thermal diffusion coefficient 2 -1[m s ]  h Hot 

l
TD  Numeric value of TD  nf nanofluid 

pd  Diameter of nanoparticles [nm] Greek symbols 

Da Darcy number   MF inclination angle [rad] 

g Gravitational acceleration [ms-2]   Dimensionless period number 

L Cavity length[m]   Density [kgm-3] 

Ha  Hartmann number   Dimensionless time 
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  TC  [Wm-1K-1]   Volume fraction 

Bk  Boltzmann constant -1[JK ]    Porosity 

K  Permeability (𝑚2)   Thermal diffusivity [
2 lm s− ] 

Nu Nusselt number   Dynamic viscosity [Nsm-2] 

p Fluid pressure [Pa]   Kinematic viscosity [m2s-l] 

Pr Prandtl number   Electric conductivity [s/m] 

Ra Rayleigh number   Dimensionless temperature 

T Fluid Temperature [K] β Thermal expansion coefficient [1/K] 

refT  Reference temperature (K) Abbreviations 

t Dimensiona1 time [s] BM Brownian motion 

,u v  Velocity components in x ,y directions 

[ms-1] 
PM Porous medium 

,U V  Dimensionless velocity components HT Heat transfer 

,x y  Cartesian coordinates [m] MF Magnetic field 

,X Y  Dimensionless coordinates NP Nanoparticle 

Subscripts NF Nanofluid 
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