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Abstract: There are many slope estimation methods in simple linear regression. The classical simple linear regression 

model constructed by the Least Squares (LS) method is better whenever the model’s basic assumptions are 

entirely met. The LS method yields unsatisfactory results when data contain outliers and other 

contaminations. So we need a parameter estimation method which is robust and efficient. This study presents 

MM estimation, Least Median of Squares (LMS), and the Repeated Median (RM) methods in robust 

regression to determine the regression model. The performances of robust regression methods and the LS 

method are compared through a simulation study and a real data application for clean and contaminated data. 

It has been observed that robust regression methods have much better performance compared to the LS 

method. Among the existing robust regression methods, the performance of MM estimation is much better 

than any other robust methods. 
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1. Introduction 

Sir Francis Galton first promoted regression analysis 

in the latter part of the 19th century. Galton had prepared 

the relation between heights of parents and children and 

famed that the heights of children of both tall and short 

parents revealed to change back or regress to the mean of 

the group. He developed a mathematical illustration of this 

tendency, the harbinger of today’s regression models 

(Neter et al., 1996). Zioutas observed linear regression 

models that are commonly used to explore data from 

multiple fields of study (Zioutas et al., 2005). 

LS method is often used to enumerate the slope and intercept 

of the best line through a set of data points. However, LS 

regression intercepts and slopes may be mistaken if the LS 

model’s underlying assumptions are not met. Two factors in 

special that may result in incorrect LS regression coefficients 

are: (a) imprecision in the assessment of the independent (x-

axis) variable and (b) insertion of outliers in the data analysis 

(Cornbleet and Gochman,1979). LS regression postulates an 

error-free 𝑥 variable and a constant analytical imprecision of 

the 𝑦 variable (also called “homoscedastic” variance), both 

of which are rarely met in practice (Stöckl et al., 1998). 

An outlier is an observation that appears to digress 

markedly from the other sample members in which it 

happens. Such extreme observations may be revealing 

some abnormality in the measured characteristics of a 

subject, or they may result from an error in the 

measurement or recording (Everitt, 2002). 
 
LS method is facile for calculation, but it is sensitive to 

outliers. Hampel initiated alternative  methods to LS, known 

as "Robust Regression" (Hampel, 2002). Robust  regressions 

are needed because they can provide reliable results in the 

presence of outliers. This method is a momentous tool for 

analyzing the data, which is influenced by outliers. The 

resulting models are stout against outliers (Draper and Smith, 

1998). There are many robust regression procedures. MM 
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estimation is the improvement of the M-estimation method 

(Susanti et al., 2014), LMS estimates reduce the median of 

squared residuals (Siegel 1982). The RM method can still 

give good estimators when 50% of the data are contaminated 

by outliers (Siegel 1982). 
 

2. Theory and Methodology 

2.1 Method of Least Squares (LS) 

Consider the simple linear regression model: 

 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖  ,    𝑖 = 1,2,… , 𝑛   (1) 

where 𝑦𝑖 is the response variable in the ith trial, 𝛽0 

(intercept) and 𝛽1 (slope) are parameters. 𝑥𝑖 is a known 

constant, namely; the value of the predictor variable in the 

ith trial. 𝜀𝑖 is a random error term with mean zero and 

variance 𝜎2. The LS standard asserts that one figure out 

the sum of 𝑛 squared deviations; this standard is denoted 

by 𝑆(𝛽0, 𝛽1). 

 𝑆(𝛽0, 𝛽1) =  ∑ 𝜀𝑖
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − 𝛽0 −
𝑛
𝑖=1

𝛽1𝑥𝑖)
2. 

(2) 

According to the LS method, the estimators of 𝛽0 (intercept) and 

𝛽1(slope) are those values 𝑏0, and 𝑏1 respectively, that 

minimize the criterion 𝑆(𝛽0,  𝛽1) for the given sample 

observations (𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛) using the 

analytical approach. It can be shown that the estimated values of  

𝛽0 and 𝛽1 are 

 
    𝑏1 =  

𝑆𝑥𝑦

𝑆𝑥𝑥
 

(3) 

   and 

  𝑏0 = 𝑦 − 𝑏1𝑥 (4) 

where 

    𝑆𝑥𝑥 = ∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖=1  and 

  𝑆𝑥𝑦 = ∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦).𝑛
𝑖=1  

 

 

2.2 MM Estimator 

MM estimation is an exceptional type of M-estimation 

(Yohai, 1987). It aims to find estimators that have a high 

breakdown value and more efficient. Breakdown value is a 

general measure of the proportion of outliers that can be 

addressed before these observations affect the model (Chen, 

2002). The MM-estimates can be appeared by a three-stage 

procedure. In the first stage, compute a basic consistent 

estimator 𝛽̂̂0 with high Breakdown Point (BP) but 

probably low normal efficiency. In the second stage, 

compute a strong M-estimator of scale 𝜎̂ of the residuals 

based on the initial estimator. In the third stage, find an M-

estimator 𝛽̂̂ starting at 𝛽̂̂0. 

In practice, LMS or S-estimate with Huber or bi-square 

function is typically conducted as the initial estimator 𝛽̂̂0. 

Let 

 𝜌0(𝑟)  =  𝜌1(𝑟/𝑘0), (5) 

 𝜌(𝑟)  =  𝜌1(𝑟/𝑘1), (6) 

and assume that each of the 𝜌- functions is restricted. The 

scale estimator 𝜎̂ satisfies 

 1

𝑛
∑ 𝜌0
𝑛
𝑖=1 (

𝑟𝑖(𝛽̂̂0)

𝜎̂
) = 0.5. 

(7) 

If the 𝜌-function is bi-weight, then 𝑘0 = 1.56 confirms that 

the estimator has the asymptotic BP = 0.5. Note that an M-

estimator minimizes   

 𝐿(𝛽)  =  ∑ 𝜌𝑛
𝑖=1 (

𝑟𝑖(𝛽̂̂)

𝜎 
). 

(8) 

Let 𝜌 satisfy 𝜌 ≤ 𝜌0. Yohai (1087) exposed that 𝛽̂̂ satisfies 

L (𝛽̂̂) ≤  L (𝛽̂̂0), then 𝛽̂̂’s BP is not less than that of 𝛽̂̂0. 

Besides, the BP of the MM-estimator depends only on 𝑘0 

and the asymptotic variance of the MM estimator depends 

only on 𝑘1. We can select 𝑘1 to achieve the desired normal 

efficiency without affecting its BP. For the sake of 𝜌 ≤ 𝜌0, 

we ought have 𝑘1 ≥ 𝑘0; the bigger the  𝑘1 is, the excessive 

efficiency this estimator can attain at the normal 

distribution. 

The values of 𝑘1with the corresponding efficiencies of the 

bi-weight 𝜌-function are provided by Maronna et al., 

(2006). Please see the succeeding table for more detail. 

Efficiency: 0.80 0.85 0.90 0.95 

               𝑘1: 3.14 3.44 3.88 4.68 

However, Yohai (1987) reveals that MM-estimators with 

larger values of  𝑘1 are more sensitive to outliers than the 

estimators corresponding to smaller values of 𝑘1. 

In practice, an MM-estimator with bi-square function and 

efficiency 0.85 (𝑘1= 3.44) starting from a bi-square S-

estimator is advised. 
 

2.3 Least Median of Squares (LMS) Estimator 

Another required robust regression method is the LMS 

(Rousseeuw and Leroy, 1987) and (Rousseeuw, P. J. 

1984). This scheme was first commenced in analytical 

chemistry by Massart and co-workers (Massart et al., 

1986). The fundamental concept behind this method is to 

introduce the median as inference in the LS method. 

Rousseeuw (1984) proposed to replace the LS with the 

LMS. The LMS estimator is given by 

 Min  𝑚𝑒𝑑
𝑖
(𝑟𝑖)

2 , for 𝑖 = 1,2,… , 𝑛, (9) 

where the median is the ⌊𝑛/2⌋ +1 th ranked value. In 
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conformity with the literature, the BP of LMS is 

 
𝜀 = lim

𝑛→∞

⌊
𝑛

2
⌋

𝑛
 = 0.5 

(10) 

where ⌊𝑛/2⌋  illustrates the integer part of 𝑛/2. The BP 

is, therefore 50%. 

Repeated Median (RM) Method 

Siegel (1982) flourished repeated median (RM) method 

which is highly robust for fitting a regression line with a 

BP of 50%. The slope and intercept were then defined as  

 𝛽1 = 𝑚𝑒𝑑
𝑖

𝑚𝑒𝑑
𝑗≠𝑖

(𝑦𝑗−𝑦𝑖)

(𝑥𝑗−𝑥𝑖)
 (11) 

 𝛽0 = 𝑚𝑒𝑑
𝑖

𝑚𝑒𝑑
𝑗≠𝑖

(𝑥𝑗𝑦𝑖−𝑥𝑖𝑦𝑗)

(𝑥𝑗−𝑥𝑖)
. (12) 

First of all, the median of the slopes is computed for 

(𝑛 − 1) pairs between a point 𝑖 and all other points 

𝑗 (𝑗 ≠ 𝑖),i.e., med 𝛽1(𝑖, 𝑗). This is put through for all points 

𝑖 (𝑖 = 1,⋯ , 𝑛). This  𝑛 medians are attained and the 

median of these 𝑛 medians med {med𝛽1 (𝑖, 𝑗)}, is then the 

repeated median method. 

3. Simulation Study 

This study considers the estimation of regression 

coefficients in a simple linear regression model. A 

simulation study is carried out for comparing the 

performances of classical regression method (LS) and 

robust regression methods with each other. 

3.1 Design of the Simulation 

The simulation is carried out by the steps listed below: 

1. Generate the independent variables 𝑥𝑖(𝑖 = 1, 2,… ,500) 
from a standard normal distribution 𝑁(0,1). 
2. Generate the errors 𝜀𝑖(𝑖 = 1,2,… ,500) independently 

from a standard normal distribution 𝑁(0,1). 
3. Generate the response variables  𝑦𝑖 based on the model: 

 𝑦𝑖 = 10 + 6𝑥𝑖 + 𝜀𝑖. (13) 

So the true intercept value is 10 and true slope value is 6. 

The process is repeated 10,000 times to obtain 500 

independent samples of 𝑦𝑖 and 𝑥𝑖. Then datasets are 

contaminated by 5%, 10% and 15% 𝑥-outliers, 𝑦-outliers 

and 𝑥𝑦-outlieres.The datasets are contaminated with 

𝑁(50, 1) (for 𝑥 variable) and with 𝑁(100, 1) (for 𝑦 

variable). For each simulated data set, 5%, 10% and 15% 

trimmed means of Mean Squares Prediction Error (MSPE) 

and coefficients of determination (𝑅2) of the regression 

coefficients are recorded. 

3.2 Simulation Results 

At first, the performances of different regression methods 

from clean data to contaminated data (𝑥-outlier) when true 

intercept value (𝛽0  =  10)  and true slope value (𝛽1 = 6) 

are presented in Table 1. The estimated values of intercepts 

and slopes for all the methods considered almost coincide 

with the actual values for clean data. Each of the methods 

provides an R-squared of 98%, which reveals that 98% of the 

variation of the dependent variable can be explained by the 

independent variable. MSPE are also almost same. So each 

method produces a better fit for the model. 

Table 1. Performance of different regression methods from clean data to contaminated data (x-outlier) when true intercept 

value (𝛽0 = 10) and true slope value (𝛽1 = 6) 

Data Methods Intercept Slope MSPE R-square 

Clean 

LS 9.9991 6.0003 0.4603 0.9874 

MM 9.9996 5.9994 0.4601 0.9875 

LMS 9.9975 5.9976 0.4890 0.9866 

RM 9.9991 6.0001 0.4622 0.9873 

5% x-outlier 

LS 9.8765 0.0501 16.7381 0.5445 

MM 9.9994 6.0004 0.4606 0.9874 

LMS 9.9996 6.0008 0.4851 0.9867 

RM 9.9998 5.8960 0.4685 0.9871 

10% x-outlier 

LS 9.8756 0.0245 16.8819 0.5426 

MM 9.9995 6.0004 0.4609 0.9874 

LMS 9.9967 6.0005 0.4850 0.9867 

RM 9.9997 5.7802 0.4881 0.9866 

15% x-outlier 

LS 9.8749 0.0161 16.9422 0.5410 

MM 9.9998 6.0003 0.4610 0.9874 

LMS 9.9979 5.9990 0.4841 0.9867 

RM 9.9986 5.6428 0.5300 0.9854 
 
With 5%, 10% and 15% of 𝑥-outliers in the sample data, it can be seen that MM, LMS and RM methods give true 
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values of intercepts and slopes. The BP of each of these 

methods is 50%. The outlier has a large influence on the 

LS method. This method gives an almost true value of 

intercept, but the slope is far from the true one.   

MM, LMS and RM estimations provide an R-squared of 

98%, which reveals that 98% of the variation of the 

dependent variable is explained by the independent variable, 

while LS estimation provides an R-squared of 54%.The LS 

estimation also yields the higher average value of MSPE 

compared to other methods. So all the methods except LS 

produce a better fit for the model. The BP of LS is 0%. 

Secondly, the performances of different regression methods 

for contaminated data (𝑦-ouitlier) when true intercept value 

𝛽0 = 10) and true slope (𝛽1 = 6)are presented in Table 2. 

Table 2. Performance of different regression methods from clean data to contaminated data (y-outlier) when true intercept 

value (𝛽0 = 10) and true slope value (𝛽1 = 6) 

Data Methods Intercept Slope MSPE R-square 

5% y-outlier 

LS 14.4898 5.7034 21.1884 0.4180 

MM 9.9995 6.0002 0.4606 0.9874 

LMS 9.9970 5.9995 0.4860 0.9867 

RM 10.0688 5.9967 0.4916 0.9872 

10% y-outlier 

LS 18.9779 5.3984 82.4698 −1.2664 

MM 9.9992 6.0001 0.4609 0.9874 

LMS 9.9973 5.9999 0.4847 0.9867 

RM 10.1463 5.9935 0.4741 0.9870 

15% y-outlier 

LS 23.4690 5.1100 184.0149 −4.0593 

MM 9.9995 6.0002 0.4612 0.9867 

LMS 9.9989 6.0002 0.4841 0.9874 

RM 10.2336 5.9875 0.4916 0.9870 

In cases of 5%, 10% and 15% 𝑦-outliers in the sample data, 

it is observed that the robust regression methods produce 

satisfactory results, and they are resistant to outliers. On the 

other hand, the LS method is badly affected by outliers. It 

produces a very large MSPE. So we conclude that the LS 

estimation is inefficient and biased. It provides a negative R-

square. R-square is negative solely when the approved model 

does not pursue the aptitude of the data, so fits poor than an 

aclinic line. This negative value also implies that the data are 

not narrated by the model.  

A negative R-square is not a mathematical improbability or the 

symbol of a computer flaw. It merely means that the selected 

model (with its obligations) fits the data really sickly. 

At last, the performances of different regression methods from 

clean data to contaminated data (xy-outliers) when true 

intercept value (𝛽0 = 10) and true slope value (𝛽1 = 6) are 

presented in Table 3.  Our simulation results show that all the 

robust methods perform much better than the LS method. 

Among the existing robust methods, MM estimation method 

is the best and strongly resistant to outliers. 

Table 3. Performance of different regression methods from clean data to contaminated data (xy-outliers) when true 

intercept value (𝛽0 = 10) and true slope value (𝛽1 = 6) 

Data Methods Intercept Slope MSPE R-square 

5% xy-outliers 

LS 9.9191 1.8344 8.4408 0.7713 

MM 10.0015 5.9994 0.4595 0.9874 

LMS 10.0031 5.9988 0.4857 0.9867 

RM 10.0119 5.8989 0.4691 0.9871 

10% xy-outliers 

LS 9.9221 1.8163 8.5138 0.7694 

MM 10.0015 5.9996 0.4598 0.9873 

LMS 10.0017 5.9992 0.4846 0.9867 

RM 10.0528 5.7842 0.4891 0.9866 

15% xy-outliers 

LS 9.9239 1.8104 8.5390 0.7687 

MM 10.0011 5.9995 0.4601 0.9873 

LMS 10.0002 6.0017 0.4831 0.9867 
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RM 10.1216 5.6462 0.5330 0.9854 

 

4. Real Data Applications 

In this section, a real dataset is used to further illustrate the 

performance of different slope estimation methods in a 

simple linear regression model.  

Machine Data 

This dataset, titled Relative CPU Performance Data, has been 

collected from UCI Machine Learning Repository. This data 

set was introduced by Phillip Ein-Dor and Jacob Feldmesser 

(1978). The data set contains 209 instances and 9 attributes 

(6 predictive attributes, 2 non-predictive, one goal field, and 

the linear regression’s guess). Here, we only considered two 

continuous variables (CHMAX: maximum channels in units 

(integer) and PRP: published relative performance (integer)). 

Different regression methods are applied to this dataset, 

and Tables 4 and 5 represent the intercept and slope of 

these methods from clean data to contaminated data. 

If we change the value of the predictor variable (say 10th 

observation 15) by a large value 10000 and corresponding 

response variable (say 10th observation 13) by a large value 

10000, then we see that in case of contaminated data, LS is 

rapidly affected by outliers. So it changes the values of 

intercepts and slopes. For LS, only one outlier is sufficient 

to cause such an effect. On the contrary, almost all the 

robust regression methods remain stable. Thus, we clearly 

observe that the robust regression methods are more stable 

than the LS method. 

Table 4. Intercept and slope of different methods for clean 

data 

Methods Intercept Slope 

LS 104.8890 -0.0071 

MM 33.2597 0.5830 

LMS 22.8333 0.6667 

RM 18.5000 2.4200 

Table 5. Intercept and slope of different methods for 

contaminated data 

Methods Intercept Slope 

LS 203.2051 -0.0191 

MM 34.2511 0.5908 

LMS 22.1071 0.6429 

RM 19.8000 2.2860 

5. Conclusion 

From this study, we estimate regression coefficients using 

different regression methods. A comparison is made among 

LS and robust regression methods using simulated datasets 

and real dataset. We compare the performances of robust 

regression methods and LS by contaminating the simulated 

datasets. We have observed that LS method and other robust 

regression methods provide almost the same results for clean 

data. But, in the case of contaminated data, robust regression 

methods have performed much better than the LS method. 

Among the existing robust regression methods (MM, LMS 

and RM), we observe that MM method produces the most 

efficient results in all contaminated cases. Although LMS and 

RM are strongly resistant to outliers, their efficiencies are 

low. In real datasets, when we replace some observations by 

outliers, LS changes immediately and provides poor results 

whether robust regressions are strongly resistant to outliers. 

Limitations 

Small departures from normality, LS method yields low 

power. It is not effective for determining and examining 

outliers (Wilcox R. R. (1998a) and Wilcox R. R. (1998b). We 

have observed that the performance of robust regression is 

better than LS both in a simulation study and real data 

applications. A disadvantage of the LMS method is its lack 

of efficiency because of its 𝑛−
1

3 convergence. 

 

References 

Chen, C. 2002. Robust Regression and Outlier Detection 

with the ROBUSTREG Procedure. Statistics and 

Data Analysis, 265-27. 

Cornbleet, P. J., and Gochman, N. 1979. Incorrect least-

squares regression coefficients in method-

comparison analysis. Clinical Chemistry, 25, 

432–438. 

Draper, N. R., and Smith, H. 1998. Applied Regression 

Analysis (3rd edn). United States: Wiley-

Interscience Publication. 

Everitt, B. 2002. The Cambridge Dictionary of Statistics 

(2nd edition).Cambridge: Cambridge University 

Press. 

Hampel, F. 2002. Robust Inference.Encyclopedia of 

Environmetrics,3, 1865–1885. 

Maronna, R. A., Martin, R. D., and Yohai, V. J. 2006. 

Robust Statistics. John Wiley & Sons. 

Massart, L., Kaufman, L., Rousseeuw, P. J., and Leroy, A. 

1986. Least median of squares: a robust method 

for outlier and model error detection in regression 

and calibration. Analytica Chimica Acta, 187, 

171-179. 

Neter, J., Kutner, M., Nachtsheim, C., and Wasserman, W. 

1996. Applied Linear Statistical Models. WCB 

McGraw-Hill, New York. 

Rousseeuw, P. J. 1984. Least Median of Squares 

Regression. Journal of the American Statistical 



6 Simple Linear Regression Model Using Different Slope Estimation Methods 
 

Association, 79, 871-880. 

Rousseeuw, P. J., and Leroy, A. M. 1987. Robust 

regression and outlier detection. New York: John 

Wiley & Sons. 

Siegel, A. F. 1982. Robust regression using repeated 

medians. Biometrika, 69, 242–244. 
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