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Abstract : Because of remarkable applications from medical services to industrial activities, the study of flow and 

temperature distribution in a coiled geometry has fascinated consideration to the scholars. In the current 

expedition, a spectral-based numerical innovation is presented for the flow characteristics with energy 

distribution in a curved square duct (CSD) with lower wall heated and cooling from the ceiling; the two 

side-walls being thermally insulated. Flow characteristics are governed by the combined action of Grashof 

number (Gr), the curvature ( ) and the Prandtl number (Pr) keeping their values fixed at 1000, 0.1 and 

7.0, respectively while the Dean number (Dn) is considered a broad range from greater than 0 to 5000. 

Firstly, we investigate the steady solution (SS) branches and found two branches of SS with 2- to 8-cell 

solution. Moreover, oscillating behaviors including transitional stages of unsteady flow (UF) is discussed 

in details. The study shows that the trend of UF changes as chaotic to chaotic via steady-state and periodic 

for progressing value of Dn. Flow transition is meticulously measured by attaining phase-portrait of the 

time-advancement results. Streamlines and isotherms for time-dependent flows show that they consist of 

asymmetric 2- to 6-cell solution. It is found that the secondary flow influences convective heat transfer 

(CHT) more effectively and boosts heat transfer substantially with the increase of the secondary vortices 

that occurs for chaotic oscillations. The correctness of obtaining the current results is confirmed by 

comparing with existing experimental exposure. 
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1.  Introduction 

Two-dimensional (2D) fluid flow behavior through a 

curved geometry is not only applied in engineering 

applications such as in chemical reactors, rocket and 

aircraft engines, heat exchangers, gas turbines, electric 

generators, air-conditioning, refrigeration, turbo-

machinery but also used in biological problems such as in 

human Lung, blood circulation in vein and arteries. It is 

noteworthy that there is a basic difference between 

straight-channel flow and curved-channel flow in terms 

of creating forces. Curved-shaped duct produces the 

centrifugal and buoyancy force causing duct curvature 

and temperature variation respectively. The work of 

centrifugal body force is mainly on the outer concave 

wall of the duct. Consequently, the generation of two-

vortex secondary flow is transferred into four-vortex 

under a critical flow condition. The existence of such 
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problem was first analyzed by Dean (1927), called the 

pioneer, who described the flow conditions curiosity. 

Ever since, several researchers have done many 

significant studies. The researchers are mentioned to 

Ligrani and Niver (1988) and Berger et al. (1983) for a 

number of exceptional reviews on curved duct flows.  

As bifurcation structure of flow through a curved-

geometry influence the fluid flow vortices, so this study 

has been started from the initial stage of the duct flows. 

Daskopoulus and Lenhoff (1990) applied finite volume 

method to investigate bifurcation structure through a 

circular pipe. For isothermal flow, Mondal et al. (2007) 

disclosed four SS branches with linear stability analysis. 

Adopting spectral technique, Yamamoto et al. (1999) 

investigated the flow formation and found a 6-cell 

phenomenon of the swirling flow. Mondal et al.(2006) 

demonstrated the bifurcation for non-isothermal flow by 

applying spectral method in the curved square channel. 

Six branches of steady structure where two branches are 

symmetric and the other branches are asymmetric have 

been described by Wang et al.  (2005) where they have 

implemented the Euler-Newton continuation technique 

with the bifurcation testing function. A detailed pore-

scale study by spectral-based method for counter and co-

rotating of the curved square duct is available in literature 

by Mondal et al. (2014) who studied solution structure, 

stability and transitions of the flow in detail.  

The understanding of the unsteady flow behaviors is of 

fundamental importance. Wang et al. (2005) studied 

numerically and experimentally the periodic fluctuations 

for an incompressible fluid in a curved square duct 

(CSD) and the comparison shows excellent agreement 

between both the results. Chandratilleke and 

Nursubyakto (2003) performed numerical approach to 

elucidate the flow properties through the variable 

geometries of different aspect ratios with warm the outer 

wall. Mondal et al. (2013) conducted numerical method 

to analyze the flow transition in a curved channel (CC). 

They investigated the impacts of Dn and Gr number on 

the secondary flow pattern. Islam et al. (2017) 

deliberated the influence of Dn’s over a wide range of Tr 

on transition in rotating curved channel flows. However, 

most of the relevant studies only focused on the weak 

rotational speed, while the transient solution with 

coupled impacts on buoyancy-influenced centrifugal-

Coriolis unsteadiness in a rotating curved rectangular 

channel (CRC) for highly gyratory speed are not 

considered though it has numerous engineering 

applications such as in plastic and metallic industry, 

cooling systems and cement industry. Hence, motivated 

from these unresolved issues, the present study deals with 

the effects of Dean number on unsteady fluid flow in a 

curved square-shaped duct of moderate curvature.  

To progress the conception of thermo-fluid behavior and 

CHT in a CD, Chandratilleke and Nursubyakto (2003) 

disclosed that CHT at the concave edge of the curved 

duct is more capable than that in a SD and the 

contribution of Dean vortices is to promote temperature 

distribution (TD) in CC. Yanase et al. (2002) and Mondal 

et al. (2014) performed mathematical simulation to 

examine the fluctuation of flow performance in a curved 

geometry and recognized that secondary flows (SFs) 

boost TD. Hasan et al. (2019a, 2019b) conducted 

numerical approach of fluid flow and HT in a rotating 

curved square-shaped channel (CSC) for various curving. 

They performed positive rotating case and investigated 

united impacts of the centrifugal, Coriolis and buoyancy 

forces. They showed time-progression flow experiences 

via different flow unsteadiness. Very recently, Roy et al. 

(2020) applied spectral method to predict hydrodynamic 

instability and CHT through a rotating CRC of moderate 

curvature. However, the transitional nature of time-

dependent flow is still unresolved for the flow having 

square-shaped geometry with temperature variation 

between top and bottom walls with changing pressure 

gradients, which inspired us to fill up this gap.  

In this study, the development of the complex flow 

behavior in the thermal flow transition in a square 

channel with stream-wise curvature while identifying the 

influence from the various flow and geometrical 

parameters is investigated for various Dean numbers. The 

main objective of this study is, therefore, to investigate 

the flow characteristics and energy distribution by 

spectral-based numerical simulation for flow through a 

curved square-shaped geometry whose bottom wall is 

heated while cooling from the ceiling. Flow structure as 

well as transient flow behavior with convective heat 

transfer is also investigated in detail. 

2. Flow Geometry and Mathematical Formulation 

Consideration is given for fully developed 2D flow 

which passes a CSD. Figure 1 illustrates the cross-

sectional view and the coordinate system of the 

computational domain with necessary notations. The 

bottom and top walls of the working system are 

considered to be heated and cooled respectively; the 

upright walls are well insulated to prevent any heat loss. 

The fluid passes through consistently in the stream-wise 

direction as exhibited in Figure 1. 

The stream functions for cross-sectional velocities have 

the following form 

1
u

r y


=


and

1
v

r x


= −

                                          
(1) 

where 1 .r x= +
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Figure 1. (a) Physical model and coordinate system; (b) Cross-sectional view 
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The dimensionless parameters, the Dean number Dn ; the 

Grashof number Gr  and the Prandtl number Pr are 

defined as: 
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Along with boundary condition for  and  as 
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(6) 

 

Boundary condition for temperature  is 

( ,1) 1, ( , 1) 1, ( 1, )x x y y  = − = −  = −
                 

(7)

 
3. Numerical simulation 

3.1 Method of numerical procedure 

For finding the numerical solution from equations (2) to 

(4), spectral technique along with the expansion by 

polynomial functions and Chebyshev polynomials is 

applied at the obtained dimensionless momentum and 

energy equations. That is, the functions expansion of  

( )n x and ( )n x are articulated as  

2

2 2
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( ) (1 ) ( )
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where, ( )1( ) cos cos ( )nC x n x−=  is the nth order 

Chebyshev polynomial. ( , , ),x y t
 

( , , )x y t  and 

( , , )x y t  are expanded in terms of ( )n x and ( )n x as 
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where M  and N  represent the truncation numbers in the 

x - and y - directions respectively, and mn , mn and 

mn
 
are the coefficients of expansion. The collocation 

points ( )
ji yx ,  are taken to be  

cos 1 , cos 1 .
2 2

p q
x yp q

M N
 = − = −

+ +

      
      
      

   (10) 

To achieve steady solutions ( , )x y , ( , )x y and 
_

(x, y), 

the expansion series (9) with coefficients ( )mn t , 

( )mn t and ( )mn t  are converted into the basic equations 

(2) - (4), abide by applying the collocation method. To 

obtain unsteady solutions, the Crank-Nicolson and 

Adams-Bashforth methods composed with the function 

expansion (9) and the collocation methods are applied to 

Eqs. (2) to (4). The processes included in the methods are 

detailed in Mondal (2007). 

 

3.2 Hydraulic resistance coefficient 

The hydraulic resistance coefficient   is defined as  

1 2 21

2
hz

p p

d





−
=


                                                

(11) 

where
h

d is the hydraulic diameter. The mean axial 

velocity  is calculated by  

( )
1 1

1 1
, ,

4 2

v
dx x y t dy

d
 

 − −
  =  

                            

(12) 

 is related to the mean non-dimensional axial velocity 

   as 

2

4 2 Dn



=

                                                                

(13)  

Using the mathematical approach, the value of  can be 

calculated from equation (13).  

 

4. Results and Discussion 

In the ongoing investigation, the characteristics of 

incompressible fluid flow through a CSD under the 

impact of rotation and applied temperature difference has 

been accomplished. In addition, curvature 0.1, =  
Prandtl number Pr = 7.0 and Dean number 

Dn (0 5000)Dn   are also considered. 

 

4.1 Combined branching structure  

A comprehensive investigation of the combined 

branching structure of the SS branch is performed and 

thereafter discuss the obtained branches individually. 

Numerical technique path continuation method is 

employed to achieve more sensible results. We obtain 

two branches of SS which are distinguished by different 

colors and line patterns for 0 < Dn ≤ 5000 and Gr = 

1000. Figures 2(a) and 2(b) are presented for combined 

branching structure and magnification of Fig. 2(a) 

respectively. The two SS branches are named branch 1 

(first branch) and branch 2 (second branch). The special 

remark here is that no bifurcating connectivity between 

the two branches of steady solutions is observed. 
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                 (b) 

Fig. 2. (a) Branching structure for 0 5000Dn    

(b) Magnification of Fig. 2(a) at larger Dn 
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First branch 

Firstly, between the two branches, the first branch has 

been plotted exclusively in Fig. 3(a) and for more clear 

visualization, enlargements of the Fig. 3(a) at larger Dn 

have been shown in Figs. 3(b) and 3(c) 

for 0 5000Dn  . Between the two branches of SS, this 

branch possesses the whole region of Dn. The branch 1 is 

entangled with four turnings in the whole branch which 

are marked in the positions b, c, d. The trend from point  

a to point e goes in the sequence 

( 100) ( 4800) ( 3699)

( 4902) ( 2299) ( 5000).

a Dn d Dn c Dn

Dn b Dn e Dn

 →  →  →

 →  → 
 

The turning points are smooth (see Figs. 3(b) and 3(c)). 

Figure 4 represents the pattern of secondary flows ( SF) 

and isotherm for several Dn. It is clear that the number of 

Dean vortex increases for increasing the Dean number. 

The reason is that  a centrifugal forces had been formed 

as the bottom wall heated and the cooling from the ceiling 

of our curved geometry. The flows were noted to be 

symmetric multi-vortex solution. The investigated results 

have been shown in Figure 4 at different turning points of 

the siolution curve as shown explicitly in Figure 3. 

   

                              (a)                                                     (b)                                                       (c) 

Figure 3.(a) First branch (b) Magnification of Fig. 3(a) about point d and (c) Magnification of Fig. 3(b) at large Dn. 

 

 

 

            
  

 

 

 

 

            
  

 

 

           Dn =            100                       4800                      3699                       2299                      5000 

Figure 4. Pattern variation of SF and isotherms on the first branch for different Dn at 0.1 =  
 

 

Second branch  

The second branch of SS is presented in Fig. 5(a). Figure 

5(b) represents the magnification of Fig. 5(a). From these 

figures, we see that this branch has three smooth turning 

points as shown by b, c, d. The branch starts at point 

a ( 5000)Dn = and it goes at the point ( 796)d Dn = with 

two turnings say b ( 1398)Dn = and ( 1473)c Dn = then 

turns in the opposite direction and finally reaches at 

point ( 5000)Dne = . Figure 6 exhibits the pattern of SF 

and isotherm and it is stating that the branch consists of 

4-vortex solution. It is identified that the streamlines of 
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the Dean flow are comprised with two or more counter 

rotating large-sized primary vortices which called 

efferent and intimate flow in the direction of anti-

clockwise and clock-wise indicated by thick solid and 

dotted lines respectively. The fluid is accelerated by the 

combined action of the centrifugal force, caused due to 

curvature of the duct, and the buoyancy force due to 

temperature difference between the two walls. The flow 

becomes asymmetric due to these combined forces. 

Figure 6 explicitly shows pattern variation of secondary 

flows and isotherms on the second branch for different 

values of Dn at 0.1 =  

                       

(a)      (b) 

Figure 5. (a) Second steady branch (b) Magnification of Fig. 5(a) about point b. 
 

 

 

 

         
  

 

 

 

        
  

 

 

        Dn             5000                       1398                     1473                       796                      5000 

Figure 6. Pattern variation of SF and isotherms on the second branch for different Dn at 0.1 =  
 

4.2 Time-dependent solution 

For analyzing the oscillating behavior with the values of 

 for SS for the mentioned Dn at 0.1 = pointed out by 

straight lines which use the same sort of lines as used in 

Figure 2(a).The flow state is also justified by graphing 

phase space (PS).  We calculate the oscillating behavior 

for Dn = 10, Dn = 40, Dn = 80. It is clear observation 

that the flow is periodic for Dn = 10 and Dn = 40 and the 

time-progression result is found that a chaotic solution 

with asymmetric 3-vortex solution for Dn = 80 as 

depicted in Figs. 7(a) and 7(c). For clear observation of 

chaotic nature, we plot phase space diagram as shown in 

Fig. 7(b). It is worth mentioning that the orbits intersect 

each other which confirm the chaotic solution. In 

addition, the flow moves around 1.13 = and fluctuates 

below the SS which means the transitional chaos. Again, 

we performed the oscillating behavior of  

for 500, 1000, 2500Dn Dn Dn= = =  and it is worth 

mentioning that the flow is steady-state with asymmetric 

two vortex solution for each three cases as depicted in 

Figs. 8(a) and 8(b); Figs. 9(a) and 9(b); and in Figs. 10(a) 

and 10(b), respectively. 
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          t               13.1                             13.5                       13.9                        14.3                         14.7 

Figure 7. (a) Time-advancement for 80Dn =  (b) Phase-space for 80Dn =  (c) Pattern variation of SF and isotherms 

for13.1 14.7t  . 
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Figure 8. (a) Time-advancement for 500Dn =  (b) Pattern variation of SF and isotherm at 10.4t = . 
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    (a)    (b) 

  

  

     

 

 

Figure 9. (a) Time-advancement of  for 1000Dn =  (b) Pattern variation of SF and isotherm at 20t = . 

 

 

 

                                                                                                                         


 

 

   

(a)   (b) 

      

 

 

 

 

Figure 10. (a) Time-advancement of  for 2500Dn = . (b) Pattern variation of SF and isotherm at 8.0.t =  

 

As Dn is increased gradually, and at Dn = 3500, the 

steady-state flow transforms into periodic with 2-vortex 

solution (Figs. 11(a) and 11(c)).To be confirm whether 

the flow is periodic or not we draw PS diagram as 

elucidated in Fig. 11(b). It can be seen that the orbits do 

not intersect each other which validates the periodic flow. 

The time-advancement procedure had been continued 

over and over again for 4000Dn = , the flow fluctuates 

haphazardly that means the flow is chaotic with 2- to 4-

vortex solution as evidences in Figs. 12(a) and 12(c), 

respectively. Figure 12(b) represents phase portrait which 

gives proof of the chaotic oscillation. Furthermore, the 

flow moves around 0.127 = and the same flow nature 

continues to 5000Dn = as illustrated in Figs. 13(a), 13(b) 

and 13(c). It is observed that mostly fluid velocity that 

get generated neighboring the concave wall and energy 

distributions are expressively circulated that makes more 

heat energy which moved to fluid from the concave wall. 

Note that, Mondal et al. (2006) conducted numerical 

simulation of viscous incompressible flow and heat 

transfer through a rotating curved square-shaped channel 

with constant curvature and identified transitional 

behavior of the flow with vortex structure of secondary 

flows. Next, Mondal et al. (2015) applied spectral-based 

numerical approach to evaluate non-isothermal flow 

characteristics in a curved square-shaped duct in a 

rotating system and reported flow transition in details. 
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(a)    (b) 

 

 

 

 

                       
  

 

 (c) 

 

                        

 
 

                    t                       6.1                        6.5                        6.9                        7.3                         7.7 

Figure 11. (a) Time-advancement of  for 3500Dn = . (b) Phase-space for 3500Dn =  (c) Pattern variation of SF and 

isotherms for 6.1 7.7t    
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              (c) 

 

                   
  

 

 

                   t =              4.1                         4.5                      4.9                        5.3                        5.7 

Figure 12. (a) Time-advancement of for 4000Dn = . (b) Phase-space for 4000Dn =  (c) Pattern variation of SF and 

isotherms for 4.1 5.7t  . 

 

                

 (a)   (b) 

 

 

                     


 

        
 

                 (c) 

 

 

                     
  

 

                     t =             0.06                       0.08                        0.10                       0.12                        0.14 

Figure 13. (a) Time-advancement of  for 5000Dn = . (b) Phase-space for 5000Dn =  (c) Pattern variation of SF and 

isotherms for 0.06 0.14t  . 

4.3 Convective Heat Transfer 

To discuss convective heat transfer (CHT) from the hot 

wall to the fluid, the temperature gradient (TG) for both 

horizontal wall has been executed. Figures 14(a) & 14(b) 

display the corresponding TG for cool and hot wall 

respectively. It can be noted that the TG for cool wall 

decreases and possesses the tendency to become zero in 

the middle region around x-axis as Dn increases except at 

Dn = 500. The centrifugal force and corresponding 
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convective heat generation to the outward direction 

influence the HT at the center of the wall. On the 

contrary, the TG for hot edge increases in the middle 

region as Dn increases except for Dn = 500 and Dn = 

1000 and it increases monotonically for larger Dn. 

 

 

 

 

 

 

 

 

 

 

 (a) (b) 

Figure 14. (a) TG at the cooling wall (b) TG at the heated wall 

 

4.4 Validation 

The validation of obtaining numerical results is 

confirmed by comparing the results of existing 

experimental data in literature. Figures 15(a) and 15(b) 

present a relative comparison of our numerical findings 

with the experimental investigations obtained by Bara et 

al. (1992) and Mees et al. (1996) for a CSD flow. Figure 

on the left of each pair is the secondary flow pattern for 

experimental outcomes and right figure shows our 

numerical result. As seen in Figure 15, our numerical 

approach has a good match with the experimental 

measurements, which justifies the accuracy of the present 

numerical study. 

 

 

(a)                 (b) 

 

 

 

               Dn =200 ( )90 =
               

Dn =209                                  Dn =150 ( )240 =
             

Dn =176 

Figure 15. Comparison of numerical data with experimental outcomes. Left: Experimental result by (a) Bara et al. 

(1992), (b) Mees et al. (1996) and right: numerical result by the authors. 
 

5. Concluding remarks 

The present study is a spectral-based numerical 

innovation for flow characteristics and energy 

distribution in a curved square-shaped duct with lower 

wall heated and cooling from the ceiling; the two side-

walls being thermally insulated. We considered various 

parameters for controlling the flows like the Grashof 

number, curvature, the Prandtl number and the Dean 

number (Dn). The following conclusions have been 

drawn from the present study; 

• An asymmetric two branches of SS are obtained 

comprising with 2- to 8-vortex solutions on 

various branches.  

• Time-progression as well as PS analysis 

demonstrates that transient flow develops in the 

sequence of “chaotic→  steady-

state→periodic→chaotic”, for increasing Dn. 

• Velocity contours show that there exist 

axisymmetric 2-vortex solution for the steady-

state, and 2- to 4-vortex for the periodic and 

chaotic oscillation respectively. 

• Convective heat transfer is increased with the 

increase of rotation. The highly complex 

secondary flow filed is developed with higher 

Dn, and HT is boosted substantially by the 

chaotic solutions than the other flow state.  



46 Numerical Analysis of Steady and Unsteady Fluid Flow and Energy... 

• The current study shows that there arises a 

strong interaction between the heating-induced 

buoyancy force and the centrifugal instability in 

the curved channel that stimulates fluid mixing 

and thereby increases heat transfer in the fluid. 
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