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Abstract: Image quality assessment (IQA) has caught researchers’ attention for decades due to its inevitable
importance to assess an image’s visual quality close to the human ability. In the course of time, several
methods have been devised which uses different features such as luminance, contrast, structure or saliency
whereas some recent approaches combine one or more features to get better performance. Psychological
research advocates that the human visual system (HVS) is biased to the center part of a scene and display
screen. Any kind of distortions occupying the center area is perceived intensely by human observer than
other areas, especially, if the center area contains any visually important information. However, current
state-of-the-art IQA methods do not consider this center bias. In this paper, at first, we derive a full
reference image quality assessment method ‘Center emphasized Structural Contrast-induced image
Quality Index (CSCQI)’ by moditfying only the center part of the structural contrast map. Then, we obtain
the ‘Saliency and Structural Contrast-induced image Quality Index (SSCQI)’ combining spectral residual
visual saliency with the structural contrast, and finally, we propose the ‘Center emphasized Saliency and
Structural Contrast-induced image Quality Index (CSSCQI)’ using structural contrast with visual saliency
and modifying center areas for both of the similarity maps to increase the distortion sensitivities there. For
the latter two methods, the final score is calculated using a novel mixed-mode pooling approach
‘summation of weighted mean and standard deviation’. Evaluations on four large-scale benchmark
databases (T1D2013, TID2008, CSIQ and LIVE) and comparison with 13 state-of-the-art methods reveal
the competitiveness of the proposed approaches. The MATLAB code is publicly available online to test
the algorithms and can be found at this Link: http:/layek.khu.ac.kr/CSSCQI.
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1. Introduction

With the growing graph of digital vision applications, an image has to pass through a pipeline of

technologies, the Image Quality Assessment (IQA)
becomes a crucial part of many image processing
applications, such as image restoration, compression,
transmission, super-resolution and the like. In real life

* Corresponding author: Md. Abu Layek
E-mail: layek@khu.ac.kr

processing stages and as a result, the original image can
get distorted easily and exhibits a certain level of
annoyance. So, IQA comes into the scene and plays an
important role to measure the quality of the degraded
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images. As humans are the ultimate viewer of the images,
the subjective evaluation by humans is the precise way to
quantify the visual quality of images, but it is very
expensive, cumbersome and time-consuming. For a very
long time, many researchers are focused to develop a
metric which can automatically predict the perceived
quality of an image, known as objective image quality
assessment metric. The IQA methods are being
developed by considering that, the results of these
approaches should be consistent statistically with the
perceived quality of human observers.

Full-reference (FR), reduced-reference (RR) and no-
reference (NR) are the three existing approaches of the
objective image quality assessment. If the complete
reference image is available, then the approach is full-
reference image quality assessment (FR-IQA), and if the
reference image is partially available or some extracted
features are available as an information then it is called
reduced-reference image quality assessment (RR-1QA)
and finally in many cases the reference image is not
available then it is no-reference image quality assessment
(NR-IQA). The center of attention of this paper is FR-
IQA.

The traditional and simplest full reference image quality
metric is the peak signal to noise ratio (PSNR) or mean
square error (MSE) (Wang and Bovik, 2009). They are
very simple to calculate but do not correlate well with
human perception. As a result, the search for better and
close to human level 1QA is ever expected, to this date,
many sophisticated IQA methods have already been
proposed. Emphasizing the sensitivity of HVS’s to
different visual signals such as contrast, luminance,
frequency content and the interaction between them,
some methods were proposed such as the visual signal-
to-noise ratio index (VSNR) (Chandler and Hemami,
2007) and the noise quality measure index (NQM)
(Damera-Venkata et al., 2000). But those error visibility
methods ignored the important characteristics of HVS
and resulted in a poor correlation. Wang et al. (Wang et
al., 2004) proposed the structural similarity index
(SSIM), which is a remarkable turning in the IQA
research. The main motivation of SSIM is that the HVS
is highly adapted to extract the structural information
from the visual field. So, the structural similarity
measurement can be a good estimation of the perceptual
image quality. In their later work, Wang et al. proposed
the multi-scale extension of SSIM (MS-SSIM) (Wang et
al., 2003) which produced a better result than SSIM.
Wang and Li proposed the IW-SSIM (Wang and Li,
2011) by introducing information content extraction and
information content weighting based pooling strategy.
Sheikh et al. proposed the information fidelity criterion
(IFC) (Sheikh et al., 2005) by quantifying the
information shared between the reference and distorted

images. An extended version of IFC is the visual
information fidelity index (VIF) (Sheikh and Bovik,
2006). IFC and VIF treat HVS as a communication
channel and these methods decompose an image into
different sub-bands that have different weights at the
pooling stage. The salient low-level features fetch vital
information to interpret the scene, based on this
consideration Zhang et al. proposed the feature similarity
index (FSIM) (Zhang et al., 2011). FSIM employs two
features, phase congruency and gradient magnitude to
compute the local similarity map then phase congruency
map is again used as the weighting function. The image
gradients are sensitive to image distortions, based on this
criterion Xue et al. proposed the gradient magnitude
similarity deviation (GMSD) (Xue et al., 2014) by
introducing a novel standard-deviation based pooling
strategy. The success of gradient magnitude and standard
deviation pooling inspired Nafchi et al. to propose Mean
Deviation Similarity Index (MDSI) (Nafchi et al., 2016),
however, they modified the gradient similarity map
through a fusion technique. The multi-scale contrast
similarity deviation (MCSD) (Wang et al., 2016) is
proposed by Wang et al. also uses the root mean square
(RMS) contrast similar to SSIM but employing standard
deviation pooling for the final score.

Visual saliency detection finds out the most attractive
regions in an image which is a similar task as IQA, as a
result, by incorporating visual saliency (VS) with 1QA
methods can improve the performance (Hou and Zhang,
2007; Ma and Zhang, 2008; Duan et al., 2011; Zhang et
al., 2012). The Spectral Residual-based Similarity Index
(SR-SIM) (Zhang and Li, 2012) combined the spectral
residual visual saliency with image gradient to model
HVS in a better way whereas Zhang et al. proposed the
visual saliency index (VSI) (Zhang, Shen and Li, 2014)
combining visual saliency (VS) with the gradient
magnitude and weighted by VS at the pooling stage. Bae
and Kim proposed the structural contrast quality index
(SCQI) (Bae and Kim, 2016) using multilevel contrast,
structure and chrominance information which can
characterize both the local and global perceptual visual
qualities. Wang et al. proposed a local linear model
(LLM) (Wang et al., 2017) based integrated IQA in
combination with a distortion-specific compensation
strategy using a convolutional neural network. Wavelet-
based IQA approaches also common, Reisenhofer et al.
proposed a Haar wavelet-based perceptual similarity
index (HPSI) (Reisenhofer et al., 2018) utilizing the
coefficients obtained from a Haar wavelet decomposition
to assess local similarities between two images.
Combining two or more features and finding quality
score through a final pooling stage also become popular
(Li, She and Sun, 2013; Jia et al., 2018), Li et al.
proposed an approach by combining VS and FSIM while
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Jia et al. use contrast and spectral residual saliency as
well as standard deviation pooling (Jia et al., 2018).

To this end, in designing an IQA, no one considered the
center bias in early eye movements which is already
known from psychological vision research (Langford
1936; Mannan et al., 1997; Parkhurst et al., 1997; Tatler,
2007). The experiment of Bindemann reveals that eye
movement is biased to the scene center as well as to the
center of the display screen. Hence, a scene appearing at
the center of screen gets the most attention and presence
of any distortion in that area caught by the human eye
more intensely. Figure 1 shows the ‘Monacrh.bmp’
image file from the LIVE database where the right part is
showing the extracted center area. The human eye will
first move to center-area and in this example, the most
salient region has also involved the butterfly, as a result,
people will find any kind of distortion easily there.
Recently, we proposed the center emphasized quality
index (CEQI) (Layek et al., 2019), where we combined
contrast and spectral residual saliency, and finally
increase the distortion sensitivity at center region.
However, in that work, we did not consider color
information. In this paper, we proposed three IQA
approaches by combining structural contrast with visual
saliency and considering center importance. We adopted
the structural contrast quality assessment as the base
method because it considers luminance, chrominance as
well as the structural contrast. Also, the clarity of their
implementation enables us to implement our ideas on top
of it. Significant improvement, as well as competitive-
ness with state-of-the methods, indicates the
effectiveness of our proposed methods. We can list the
contributions of this paper as below, details about the
implementations are given in section 2:

(i) First, we propose the ‘Center emphasized
Saliency and Structural Contrast-induced image
Quality Index (CSCQI)’ by modifying only the
center part of the structural contrast map.
Similarity maps are usually a down-scaled
matrix relative to the reference and distorted
images where a value 1 represents exactly
similar, 0 as totally dissimilar, a value between

Monarch.bmp from LIVE database

(if)

(iii)

(iv)

0 and 1 represents the degree of similarity.
When a person assesses a distorted image with
respect to a reference, he/she actually search-for
the dissimilar areas in the distorted image. To
incorporate our center-emphasize idea, we
apply a simple element-wise square to represent
the dissimilar areas as more contrasting.

The second contribution of this paper is the
successful merging of Spectral Residual Visual
Saliency(SRS) with SCQI to derive a new and
improved IQA i.e. ‘Saliency and Structural
Contrast-induced  image  Quality  Index
(SSCQI)’. After obtaining both structural
contrast and spectral residual saliency similarity
maps, the final score is calculated using a novel
mixed-mode pooling approach. In this case, we
do not give any special importance to the center
part.

Thirdly, we propose the ‘Center emphasized
Saliency and Structural Contrast-induced image
Quality Index (CSSCQI)’ using structural
contrast with visual saliency and modifying
center areas of both of the similarity maps to
increase the distortion sensitivities there. Visual
saliency detection is dependent on the current
view of the image thus we compute the visual
saliencies and the similarity map of the full and
center image separately.

Finally, we propose a novel mixed-mode
pooling approach which we utilize in the
second and third methods (SSCQI, CSSCQI).
The study in GMSD unveiled that standard
deviation is not suitable for SSIM, MS-SSIM or
FSIM, also the authors of SCQI used weighted
average and achieved quite good results. On the
other hand, SD pooling has successfully
employed by several papers with the saliency
maps. As a result, we apply a weighted average
in SCQI map and SD pooling for saliency map
and finally compute the weighted sum to obtain
the final score.

Center Block

Figure 1. The image Monarch.bmp and its’ center area
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We evaluated our proposed methods on four large-scale
popular benchmark databases for IQA research and
compared with 13 other state-of-the-art methods. Results
show that the techniques proposed by us outperform
other comparing approaches. Adding visual saliency
improved the correlation of predicted score with the
human evaluated values and center emphasis boosts-up
the performance with or without saliency.

The paper is organized as follows. Section 1 describes
theories and related techniques. Section 2 explains the
proposed IQA approaches along with the novel mixed-
mode pooling strategy, and the results with relevant
discussions are presented in Section 3. Finally, we
conclude the paper in Section 4.

1. Background

In this section, we briefly review the related theories on
which the content of this paper relies; the structural
contrast, spectral residual visual saliency, and the
evaluation metrics.

1.1 Structural Contrast Quality Index

Contrast is a basic perceptual attribute of an image which
varies greatly over the image [29]. Bae et al. [18]
proposed structural contrast quality index (SCQI) by
adopting the structural contrast index (SCI) [30], that can
estimate the perceptual complexity of image texture
patterns as the ratio of structureness and contrast
intensity. Here, we briefly describe the SCQI in an
independent manner, more details are given in section 2
and in Figure 2, further details are in the reference SCQI
article [18].

SCQI gives a quality index value which is calculated as

K
, 1 s
SCQI =) {IT > wi® SCQIMP] )
i=1
where K is the number of items in the SCQIly;,,,W; is
the local weight, W is the summation of all weights,
and SCQIy,, is the similarity map calculated by
element- wise multiplication of six similarity maps
sm;,i=1,...,6as
6
SCQInap = Hsm;. (2)
i=1
The six similarity maps are based on six features; two
chrominance, three contrast sensitivity function (CSF) on
contrast energy frequencies (low, mid and high), and the
structural contrast. However, SCQI uses the inverse
value of structural contrast index than proposed in [30]

(SCT=771) so that more distortion-sensitive image
texture regions have higher SCI values that are more
important regions to HVS.

All of the similarity maps are measured in the same way.
If the reference image is R, the distorted image in the
question is D, and corresponding feature matrices are f my
(i) and f md (i) respectively, then the similarity measure

sm; is given as
| o (2fme (@) fmali) + ei)
smi(R, D) = (fme ()2 + fma(i)2 +¢;)’ )

where ¢; are six corresponding positive constants to increase
calculation stability.

Now, let’s take a look at how the feature matrices are
obtained.

At first, the images are converted to LMN color space from
RGB to separate luminance (L) and two chromniance (M,
N) components using following relationship

L 0.06  0.63 0.27 R
M| = 1030 0.04 -035| (G}, 4)
N 0.34 —-0.60 0.17 B

Using the above equation, we get the M and N Chroma
matrices for both reference and distorted images and
compute the Chroma maps using equation 3.

The SCI and three CSF features are derived from the
luminance. CSF matrices are calculated as below

CSf(k') — E p(u! v)a (5)
(u,v)eRy,
where, p (u, v) is the normalized magnitude of a DCT

coefficient at (u, v), k is one of the low, mid or high and
Rk are the corresponding ranges.

The structural contrast 7 is given as,
r=CI*/TP", (6)
where o and £ are model parameters, Cl is the contrast

intensity, and T P is the structureness reflecting the
randomness of texture patterns given by

TP = my/(ms)?, (7)
where m, is the k-th moment of normalized DCT AC
coefficients, and is defined by

E k
we B,w#0
where o is a spatial frequency value in cycles per degree

mp =
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(cpd) for (u,v)-th DCT coefficient and is calculated by

w = 0./ u? + v?, ©)

where 6 is a const ant and p(w) is the magnitude of a
normalized DCT coefficient at w and is defined as

pw) = (e+ew)M)/Z2.  ao
where ¢(w) is the DCT coefficient value at o, € is a very
small constant value to avoid unstable results when the
denominator is close to zero, A is an adjustment parameter
to fit the measured experimental results, and Z is a
normalization factor given by

Z= > (e+]cw)).

(11)
wE B,w#0
The contrast intensity in 6 is defined as
Cl = mO/NQ, (12)

where N is the height or width of a NxN DCT block.

We adopt the same model parameters as it is used in SCQI
which are setto €=0.25, A=1, a=1, and p=1. With these
values, SCI is simplified as below

Pwnyenl@? +v2)? @ (e + [e(u,v)|)}
P wmenl@? +v2)2 0 (e + [e(u,v)])}?

where (u,v) is the (u,v)-th DCT coefficient value.

SCI =

(13)

1.2 Spectral Residual Visual Saliency Similarity

In any image, salient regions caught more attention than
other areas and detection of those parts is called saliency
detection. Therefore, the human is more sensitive to the
distortions in those interesting and salient regions than
other parts. Any distortion in these parts attract intense
attention, which makes it an important feature for IQA,
as a result, many IQA researchers utilize visual saliency
as an important feature. Spectral residual saliency
detection [13] is a very fast approach among the various
detection techniques [31]. We adopt the image saliency
map generator as described in the SR-SIM [16].

For an image f (x, y), the spectral residual saliency (SRS)
is computed as follows:

M (u,v) = abs[F{ f(x,y)}(u,v)] (14)
A(u,v) = angle[Z{f(z,y)}{(u,v)] (15
L(u,v) = log{M (u,v)} (16)

D oiey
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R(u,v) = L(u,v) — hy(u,v) * L(u,v) (17)
SRS(x,y) = g(z.y) * [F Hexp(R+ jA) Hay)P.  (18)

where & and # 1 are the Fourier transform and the
inverse; abs(.) return the magnitude and angle(.) returns
the argument of a complex number. (x,y) is a Gaussian
filter; h,(u,v) is an nxn mean filter; and# denotes the
convolution operation.

Using equations 14-18, we calculate the spectral residual
saliencies for both the reference and distorted images
denoted by SRS, (x,y) and SRSy(x,y), respectively. Then,

the saliency similarity map SRSy,,,(r,d) is calculated as:
_ 25RS.(x,y) © SRSy(z.y) + 1
"~ SRS.(z,y)?+ SRSy(z.y)% + ¢’

SRSM,,[)(P, d) (19)

where 2 is the element-wise squaring, O refers to element-
wise multiplication, and c1 is a positive constant for
calculation stability.

1.3 Evaluation Metrics

We can measure the performance of a IQA method using
some correlation measurements with respect to the human
evaluated subjective scores, the root mean square error
(RMSE) is also used. Before applying the linear
correlation, the two compared values should be on the same
scale and perfectly linearly correlated [32]. For this
purpose, a logistic mapping function is used to convert the
objective scores before applying the linear correlation
measurements. We adopt the following nonlinear regression
model as suggested by Sheikh [33].
1 1

v =53 1+ exp(Ba(q — fs))
where q is the objective score, ¢, is the mapped value,
and fi are the 5 parameters that are tuned based on the
relationship between objective and subjective scores. To
find the optimal parameters, we utilized the nlinfit
function that is already built within MATLAB. The
subjective scores are then used with these mapped scores
to find the following correlation coefficient.

b+ Big+ B, (20)

The Pearson’s linear correlation coefficient (PLCC) is
defined as follows:

(0i — pro)(si — f1s)

PLCC(o,s) =
m

{ ZZ: 1

where 0 and s are vectors of the objective and subjective

scores, respectively; o and s are their mean scores; and

m is the number of distorted images. The objective scores

(01 — 110)2} 2 {3

(21)

19
m 212
of o are actually the mapped scores using Equation (20).
If we want to avoid the nonlinear mapping in Equation

(20), rank order coefficients can be used. The popular
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Spearman’s rank-order correlation coefficient (SROCC)
is given as:
SROCC(o,8) = PLCC(rank(o), rank(s)). (22)

Applying the rank() function on a score vector returns a
rank-vector where the i-th entry contains the relative
rank of the i-th item in the score vector. Another
popular rank order metric is the kendall’s rank-order
correlation coefficient (KROCC), which is given as
below:
Op — Dp

m(m —1)/2’

Where C, and D, are the number of concordant and
discordant pairs.

KROCC(o,s) = (23)

The root mean square error (RMSE) is defined as:
1

RMSE(o,s) = {% Z(Oi — 3?.‘)2} (24)

=1

A larger value of PLCC, SROCC, and KROCC is an
indicator of superior method whereas in the case of
RMSE smaller is better IQA. Again, SROCC is treated as
the most important correlation measurement among these
metrics.

2. Proposed Assessment Methods

The complete flow diagram of our proposed ‘Center
emphasized Saliency and Structural Contrast-
induced image Quality Index (CSSCQI)’ is presented
in Figure 2. Before going detail to the final system
we discuss the other two methods with the help of
the same figure.

1.4 Center emphasized Structural Contrast induced
image Quality Index (CSCQI)

To derive this method, we just modify the center part
of the SCQImap Which we get by applying equations
(1)- (13). We define the center region for both
images and similarity maps as follows:

1.5 Saliency and Structural Contrast induced image
Quality Index (SSCQI)

For the original dimension of (H x W), the

corresponding dimension of the center block
K

becomes (Hmig X Wmig), Where:

H W
Hyiqg = ’V?-‘ and W4 = ’77—‘ (25)

The center block is defined as a rectangular area
identified by two corner points (XqinYmin) and

(Xmax,ymax), where:
min 3 y'm'm, = ,

Tmax = ’Vg—‘ +H771i(15 and Ymazx = lrg—‘ +W771id

(26)

If we denote the center part of the SCQIy,, as

SCQlyap(mid),  then the updated center part
CSCQlap(mid) is defined as

CSCQInrap(mid) = SCQInrap(mid) © SCQInrap(mid), (27)

where O is the element-wise multiplication.

With the updated center region, we get the center
emphasized SCQIy,, denoted as CSCQIlmap. After that,
using equation 1we compute the final CSCQI value as

K
1
CSCQI=) [W > wi ©CSCQIvay|-  (28)
i=1

Neither SCQI nor the CSCQI discussed above include
visual saliency for quality assessment. As discussed in
the introduction, visual saliency is directly related to
HVS and several other works used visual saliency with a
success. In our recent paper, we combined spectral
residual saliency with RMS contrast which exhibits very
good performance [28]. As a result, in this work, we
incorporate the spectral residual visual saliency with
SCQI which again gives satisfactory improvement
compared to SCQI as shown in section 3.

Here, we do not incorporate our center-emphasized idea.
The SCQIlwmap is computed using equation 2 and the
saliency similarity map Salwap is computed using
equations 14 — 19.

Finally, we apply a mixed-mode pooling strategy which is
discussed later in section 2.4, on both SCQIl,,,, and
Saly,, Using Equations 29, which gives us the final
quality score SSCQI as:

SSCQI =Wy x Y l% > wi SC-’QIA_IQP] + Wy x {1 — stdev(Salprap) } (29)

i=1
where K is the number of items in the SCQIly,,W; is the

local weight, W is the summation of all w;,W, and W, are

positive weighting factors (W,+W,=1) which specify the
importance between saliency and structural contrast.
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A=Chromapyap

w|
Y

CSfHR s
I—
* §=¢5'IMap
SClg b
Y
. C=csfMpap
y

*  D=csfHyap

S(-‘QIM,,,, =AoBoCODOE

~ =% Rmg Dimid

SCQInap(mid) = SCQInap(mid) © SCQIppap(mid) E=SClmap a
Saliency(Rpmiq) Saliency(D

Saliency(Ig) Saliency(lIp)

IV

CSCQiyap

K
CSSCQI =Wy x Y [;, S wio CSCQIMQ,,] +Wa x {1 — stdev(CSalprap)}

i=1

Figure 2. Flow diagram of quality index calculation in the proposed center emphasized approach.

It is to be noted that, in the second part of the equation, the 1.6  Center emphasized Saliency and Structural
standard deviation of saliency map stdev(CSaly,,p) is Contrast induced image Quality Index
subtracted from 1 because a higher SCQI score refers to (CscQ)

better similarity whereas the value of stdev (CSaly,;)  This is the final proposed method where we combine
bears the opposite meaning. visual saliency and SCQI emphasizing the center part for
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both of the similarity maps. The full process is described
as a flowchart in Figure 2.

First, the saliency similarity maps for the full images and
middle images are found using Equations (14)—(19) and
are denoted as Salwap and Salmig-Map, respectively. Then,
we increase the sensitivity of the center area within the
Salmap. If the center area of the full saliency map is
Salmap(mid), then it is updated to CSalmap (Mid):

CSalppap(mid) = Salppap(mid)) © Salmia—map  (30)

With the updated center part, we obtain the center-

emphasized saliency map denoted by CSalwvap.
K

Simultaneously, the CSCQIlwuap is also calculated using
equation 28 in the same way as in section 2.1. Salwap
computes the relative importance within the whole
image, as a result, deriving saliency from middle image
separately gives us fine-grained feature. In contrast,
structural contrast is a local feature and thus we do not
derive the SCQIlwmap for middle images.

Finally, in this case, we again apply the mixed-mode
pooling strategy as discussed in section 2.4 on both
CSCQImap and CSalmap using Equation 31, which gives us
the final quality score CSSCQI as:

CSSCQI =Wy x Y l”, > wi © CSCQInap| + Wa x {1 — stdev(C'Salprap)} (31)

i=1

where the parameters bear similar meaning as in equation 29.

1.7 The Mixed-mode Pooling Strategy

As we have mentioned in the introduction, standard
deviation (SD) pooling achieves very good performance
in specific cases and is adopted by several successful
methods. Jia et al. conducted an experiment with several
other combinations of pooling and found that SD pooling
provides the best correlation with the spectral residual
saliency [22]. However, with SCQI, as we also found in
our experiments, SD pooling is not giving satisfactory
performance. As a result, in this paper, we propose a
novel mixed-mode pooling strategy the ‘summation of
weighted mean and standard deviation’ combining both
weighted average and standard deviation and final quality
score is obtained by summing-up them. If two feature
similarity maps are FSM1 and FSM2 where FSML1 is
weighted average pooling friendly and FSM2 performs
better with SD pooling, then using mixed-mode pooling
we can compute the quality score as:

.
Qs = x ¥ %Z we © FSML| + Wy x {stdev(FSM2)}  (32)
Where K is the number of items in the FSM1, w; is the
local weight, W is the summation of all w;, W, and W, are
positive weighting factors (W;+W,=1) which specify the
importance between saliency and structural contrast. The
standard deviation in the above equation is defined as:
) M 1
1 s 3
std( FSM2) = {ﬁ S (FSM2; - m_mﬁ} (33)

i=

where M is the number of total elements in the similarity

matrix; FSM2; is the ith item; uFSM2 is the mean value
of the FSM2 and is given by:
1 M
HPSM2 = 77 Z FSM2; (34)

i=1
3. Results and Analysis

Experiments were carried out on four popular benchmark
databases for IQA research TID2013[34], TID2008[35],
CSIQ[36] and LIVE[37]. Our approach was compared
with 13 other state-of-the-art recent IQA methods namely
SSIM[4], MS-SSIM[5], IW-SSIM[6], MAD[38],
FSIMc[9], GMSD[10], MCSD[12], VIF[38],

VSI[15], HPSIe[20], MDSI[11],LLM[19] and SCQI[18].
CEQI[28], SCQI and the proposed approaches are again
compared in Table 4 to clearly illustrate the effectiveness
of center emphasizing and the mixed-mode pooling
strategy. Basic information about the databases is given
in Table 1 and the distortion information is recorded in
Table 2.

Reference Distorted Distortion No. of
Dataset .
Images Images Types Subjects
TID2013 25 3000 24 971
TID2008 25 1700 17 838
csia 30 866 6 35
LIVE 29 779 5 161

Table 1. Basic information about the databases used
for experiments.
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TID2013 TID2008 CSlQ LIVE

Type of distortion

Abbreviation

15

Y Y Y Y |Additive Gaussian noise AGN
Y Y - - |Additive noise in color components ANC
Y Y - - |Spatially correlated noise SCN
Y Y - - |Masked noise MN
Y Y - - |High frequency noise HFN
Y Y - - |Impulse noise IN
Y Y - - |Quantization noise QN
Y Y Y Y |Gaussian blur GB
Y Y - - |lmage denoising IDN
Y Y Y Y |JPEG compression JPEG
Y Y Y Y |JPEG2000 compression IP2K
Y Y - - |PEG transmission errors JGTE
Y Y - - JPEG2000 transmission errors J2TE
Y Y - - |Non-eccentricity pattern noise NEPN
v v i ) Lc_:cal blotfk-wisg distortions of LBD
different intensity
Y Y - - |Mean shift (intensity shift) MS
Y Y Y - |Contrast change CTC
Y - - - |Change of color saturation CCs
Y - - | Multiplicative Gaussian noise MGN
Y - - - | Comfort noise CMN
Y - - - |Lossy compression of noisy images LCN
Y - - - |lmage color quantization with dither IcQ
Y - - - |Chromatic aberrations CA
Y - - - |Sparse sampling and reconstruction SS
- - - Y |Fast fading Rayleigh FF
- Y - |Additive pink Gaussian noise AWPN
Table 2. Description databases diving into the types of distortions used
Dataset | Metric  SSIM ::;1 slg:ll\-n MAD  FSIMc GMSD MCSD VI VSl HPSle MDSI LLM  scal  cscal  sscal  €sscal
o SROCC 0.7417 0.7859 0.7779 0.8086 0.8510 0.8044 0.8089 0.6679 0.8965 0.8732 0.8899 0.9037 0.9052 0.9058 0.9045 0.9057
s KROCC 0.5588 0.6047 0.5977 0.6236 0.6665 0.6339 0.6385 0.5067 0.7183 06923 0.7123 0.7209 0.7327 0.7337 0./323 0.7346
S PLCC  0.7895 0.8329 0.8319 0.8267 0.8769 0.8590 0.8648 0.7720 0.9000 0.8935 0.9085 0.9068 0.9071 0.9075 0.9082 0.9087
@ RMSE 0.7608 0.6861 0.6880 0.6975 05959 0.6346 0.6225 0.7880 0.5404 05568 0.5181 0.5277 0.5219 05207 0.5187 0.5175
- SROCC 0.7749 0.8542 0.8559 0.8340 0.8840 0.8907 0.8911 0.7491 0.89/9 0.9104 0.9207 0.9077 0.9051 0.9072 0.5076 0.9088
g KROCC 0.5768 0.6568 0.6636 0.6445 0.6991 0.7092 0.7133 0.5860 0.7123 0.7373 0.7513 0.7368 0.7294 07320 0.7329 0.7357
2 PLCC  0.7732 0.8451 0.8579 0.8306 0.8762 0.8788 0.8844 0.8084 0.8762 0.9067 0.9160 0.8971 0.8899 0.8917 0.8933 0.8941
@ RMSE  0.8511 0.7173 0.6895 0.7473 0.6468 0.6404 0.6263 0.7899 0.6466 0.5661 0.5383 0.5982 0.6120 0.6073 0.6030 0.6010
SROCC 0.8755 0.9132 0.9212 0.9466 0.9309 0.9570 0.9592 0.9194 0.9422 0.9603 0.9568 0.9050 0.9434 0.9442 0.9497 0.9473
8 KROCC 0.6900 0.7386 0.7522 0.7963 0.7684 0.8122 0.8171 0.7532 0.7850 0.8234 0.8122 0.7238 0.7863 0.7833 0.7974 0.7937
el PLCC 0.8612 0.8991 0.9144 0059502 09191 0.9541 0.9560 0.9257 0.92/9 0.9580 0.9531 0.9000 09268 0.92/8 09373 09338
RMSE 0.1334 0.1149 0.1063 0.0818 0.1034 0.0786 0.0770 0.0993 0.0979 0.0753 0.0795 0.1232 0.0986 0.0979 0.0915 0.0939
SROCC 0.9460 0.9512 0.9604 0.9567 0.9599 0.9546 09603 0.9719 0.9464 0.9585 09577 0.9608 0.9438 0.9440 0.9460 0.9455
E KROCC 0.8057 0.8181 0.8379 0.8290 0.8366 0.8236 0.8350 (0.8571 0.8000 0.8242 0.8194 0.8230 0.7929 0.7932 0.7968 0.7961
m PLCC  0.9385 0.9468 0.9515 0.9493 0.9503 0.9511 0.8540 0.9723 0.9431 0.9601 0.9687 0.9578 0.9373 0.9373 0.9386 0.9379
RMSE 7.9838 7.4380 7.1116 7.2690 7.2002 7.1374 6.9329 5.4030 7.6856 6.4675 5.7347 7.7678 8.0593 8.0567 7.9758 8.0204
2 SROCC 0.7987 0.8453 0.8445 0.8557 0.8865 0.8695 0.8728 0.7678 0.9104 0.9072 09169 009135 09160 0.9170 0.9175 0.9180
% KROCC 06179 06679 0.6713 06827 07140 0.7055 07110 0.6124 0.7378 0.7411 0.7517 0.7407 0.7480 0.7494 0.7507 0.7519
F PLCC  0.8171 08619 0.8675 0.8624 0.8933 0.8905 0.8953 0.8318 09040 0.9154 0.9254 09110 0.9098 059106 0.9127 09126

Table 3. Comparison of score prediction on different IQA methods on four databases.

— In each row, the double-underlined, underlined and simple bold numbers represent the first, second and third-ranked performances

respectively

— For RMSE a lower score is better whereas higher values are better for the SROCC, KROCC and PLCC metrics.
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Dataset
SROCC
KROCC
PLCC
RMSE

0.8168
0.6492
0.8742
0.6019

Metric CEQI[28] scaQl

0.9052
0.7327
0.9071
0.5219

cscal

0.9058 0.

0.7337
0.9075
0.5207

sscal csscal

0.9057
0.7346
0.9087
0.5175

SROCC
KROCC
pLCC
RMSE

0.9069

8007 ALL | €107 ALL

0.9051

0.7294

0.8899
0.612

0.9072
0.732
0.8917
0.6073

0.9088
0.7357
0.8941
0.603 0.601

SROCC 0.9563
KROCC
PLCC
RMSE

0ISD

0.9434
0.7863
0.9268
0.0986

0.9442
0.7883
0.9278
0.0979

0.9473
0.7937
0.9338
0.0939

SROCC
KROCC 0.
PLCC 0.9534
RMSE 6.973

0.9438
0.7929
0.9373
8.0593

0.944
0.7932
0.9373
8.0567

0.9455
0.7961
0.9379
8.0204

SROCC
KROCC
pLCC
RMSE

MIVIIAO  TAIT

0.916
0.748
0.9098
1.6197

0.917

0.7494 0.
0.9106 0.

1.6174

0.918
0.7519
0.9126
1.6024 1.6084

Table 4. Performance comparison among CEQI, SCQI, CSCQI, SSCQI and CSSCQI
— In each row, the double-underlined, underlined and simple bold numbers represent the first, second and third-ranked performances

respectively

— For RMSE a lower score is better whereas higher values are better for the SROCC, KROCC and PLCC metrics.

The performance comparison was done using four
commonly adopted metrics— SROCC, KROCC, PLCC,
and RMSE, eclaborated as Spearman’s rank-order
correlation coefficient, Kendall’s rank-order correlation
coefficient, Pearson’s linear correlation coefficient
(PLCC), and the Root mean square error.

Table 3 shows the results on four benchmark databases
among different IQA models for all of the four metrics
mentioned above. The top three values are indicated
using the double-underline, single-underline and no-
underline respectively with a boldfaced font. However, in
the case of RMSE, the lowest value is double-underlined,
since a lower RMSE implies a better method. All of our
proposed methods perform better than the SCQI, as a
result, it is evident that both center-emphasis and visual
saliency can improve SCQI independently. Again, we see
that, for the biggest database, TID2013, CSSCQI
outperforms all of the compared methods in KROCC,
PLCC and RMSE metrics whereas CSCQI tops in
SROCC. For the other three databases, proposed methods
achieve competitive performance. We calculated the
weighted averages of the SROCC, KROCC, PLCC, and
RMSE using the number of distorted images to find the
overall performance, as suggested in [6]. It can be
noticed that, compared to VSI, HPSIle, and MDSI, our
proposed CSSCQI shown better prediction accuracy with
(0.76%, 1.08%, 0.11%)-point,(1.41%, 1.08%, 0.02%)-
point higher overall SROCC and KROCC values,
respectively.

To investigate the improvements over SCQI, Table 4
shows the comparison only among the methods proposed
by us (CEQI [28], CSCQI, SSCQI and CSSCQI) along

with the SCQI. CEQI was proposed in our previous
workwhereas CSCQI, SSCQI and CSSCQI are discussed
in this paper. We find that CSSCQI have the highest
performance on the biggest two databases TID2008 and
TID2013 SSCQI is the second highest. Although CEQI
shows top performance for the smaller databases CSIQ
and LIVE, the overall performance is the lowest. On the
other hand, SSCQI achieves second highest proving the
successful merge of SCQI with spectral residual saliency
using the mixed-mode pooling strategy. All three
proposed methods in this paper perform better than SCQI
in almost all possible cases. The overall ranking based on
performance is shown in Table 5. CSSCQI holds the
highest ranks in SROCC and KROCC but ranked 4 in
PLCC, however, the improvement of the proposed
approaches over the SCQI is clearly noticed.

Table 6 shows the SROCC performance comparison for
all distortion types for TID2013, CSIQ and LIVE
databases; Table 2 provides the necessary description of
an abbreviation. All images are not affected equally by a
specific type of distortion rather it varies with the color,
salient regions and several other factors related to an
image. As a result, we see that methods are giving
discrete performances for different distortions and
performance  even  varies  between  databases.
Nevertheless, Table 6 gives us a good understanding of
whether an 1IQA method is biased to any specific noise
type or not. It can be seen that the proposed CSCQI,
SSCQI and CSSCQI perform consistently well for all
types of distortion; they are not too biased to any specific
type of distortion while retaining satisfactory average
performance.
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QA SROCC KROCC PLCC
SSIM 15 15 16
MS-SSIM 13 14 14
IW-SSIM 14 13 12
MAD 12 12 13
FSIMc 9 9 10
GMSD 11 11 11
MCSD 10 10 9
VIF 16 16 15
VSI 7 8 8
HPSle 8 6 2
MDSI 4 2 1
LLM 6 7 5
scal 5 5 7
cscal 3 4 6
sscal 2 3 3
Ccsscal 1 1 4

Table 5. Table: Ranking of IQA methods based on overall performance
—Numberlisthebestand16istheworst.

Dataset |Noise S5IM  MS-SSIM IW-S5IM  MAD  FSIMc  GMSD  MCSD VIF VSl HPSle  MDSI 5CqQl osCal ssCQl  Csscal
AGN 08762 08773 08581 0.8820 09162 09445 09425 09302 0.9464 09405 09491 09438 09437 09433 09437

ANC 07825 07836 07635 08053 08639 0.8/41 038716 058466 08711 0.8738 0.8842 Q3636 08629 0.8634 0.8623

scy 08823 0.8844 08499 09055 09105 09401 09486 09261 09493 09429 09575 09529 09517 0.9539 09507

VN 08372 0.8509 0.8440 0.8041 0.8760 0.8284 08322 0.8%08 08715 0.8471 0.8843 08794 0.8816 08658 0.8725

HFN  0.8248 0.8358 (.8530 0.8723 (0.8854 0.8684 08754 0.8948 0.8783 0.8976 0.3908 0.8827 0.8840 0.3862 0.8847

IN 0.7608 07397 0.7312 04903 0.8355 0.8369 0835 0.8578 0.8846 0.3662 0.8851 0.8743 0.8774 0.8730 0.8765

GN 0.8748 0.8662 08245 0.8067 08701 0.8782 08798 0.8961 0.8990 08790 09093 O.8887 08911 0.8805 0.8883

GB 09396 0.5458 0.9407 0.8878 09285 09240 09158 0.8327 09267 0.8969 09365 09624 09624 0.9639 09618

IDN 08920 08906 08947 09212 059247 09318 09239 08684 09207 09440 09126 09247 09266 09237 09303

PEG  0.8917 05000 0.8898 09126 08918 09042 08033 0.8700 09188 0.9227 09125 09173 09171 09180 0.9177

a4 P2K 05461 05541 0.9499 05526 09630 09720 09674 09443 09707 0.9636 05651 09648 09664 (9670 0.9680
o GTE 09137 09216 09123 08272 09239 08950 08744 08785 0.9555 0.9378 09405 09411 0.9459 09418 09446
5 2TE 08789 0.8838 08542 08291 03944 08751 08560 08840 09252 0909 09187 09293 09346 09291 09327
& NEPN 08667 08503 07587 06555 08587 08085 08012 0.8333 0.8807 0.8502 0.8388 0.875% 0.8760 0.8711 0.8663
LB 04098 07713 0.6889 08618 0.7576 0.8601 0.8811 0.6727 0.8530 0.8333 0.8884 0O.8730 0.8665 0.8744 0.8711

VS 03118 08260 08259 07745 0.8800 0.8967 0.8978 0.7556 08308 0.8658 09049 08709 08622 0854 0.8649

CTC  0.6363 05742 05702 04839 05561 05738 05067 0.7290 05856 0.5636 05950 05887 0.5868 05897 05969

CCS 00725 06850 0.6899 04094 03905 07344 07159 0.5446 05546 05390 05504 05837 05864 05722 05800
MGN 04613  0.4596 0.4453 03744 05707 04145 04117 04501 07947  0.5896 07330 0.8204 03189 0.8193 0.8182
CMN 07915 07796 07841 0.8470 08736 09055 09047 07869 0.9235 08955 0.8898 09179 09180 09156 09188

LCN  0.8901 0.8895 09043 08335 09338 09487 0.9512 0.9145 009400 0.9435 09378 09309 09320 09343 09332

ICQ 05023 09041 09007 08185 0.9466 09621 0.9592 09032 09386 09591 08528 0.9470 09498 09461 0.9473

CA 08620 0.8678 0.8513 0.8861 0.8756 09059 09170 0.8439 08951 0.8873 0.8953 0.9258 0.9257 09250 0.9261

1SS 0.8805 0.8820 0.8717 0.8288 08870 (.8483 08350 08852 08845 03475 08719 0.8940 0.8943 08933 0.8950
AVG 183856 19.8242 19.4618 189711 20.2161 20.5312 30.4220 19.8393 20.9989 20.5960 21.0183 21.1538 21.1630 21.1140 21.1531

AGN 07212 07310 07187 07611 0.8360 0.7847 07906 0.6559 (0.8980 0.8611 0.8788 0.8841 0.8881 08836 0.8890

PEG 08341 0.875¢ 08990 09103 09158 09075 08973 Q7628 09132 09321 09198 Q9167 09182 09199 0.9209

. P2K 07778 0.8556 0.8794 0.8483 0.8984 08706 08588 0.7427 09236 0.9325 09434 09212 09216 09213 085231
£ IAGPN 0.6871 0.7300 0.7095 07462 0.8056 07484 07582 07081 0.8701 08564 08351 0.8864 0.8888 0.3813 0.2848
R GE 08071 08133 07950 07776 Q8770 0.8103 07985 0.7205 0.9051 0.8839 0.8759 0.8B99% 0.8998 0.8937 0.8976
CTC 07907 08268 08072 08017 0866l 08249 08051 0.718c 09196 09027 09107 Q09132 09121 09157 09155
AVG 07697 08054 08015 0.8075 08665 0.8244 0.8133 0.7181 0.9049 0.8948 0.8%46 {9036 0.9048 0.9027 0.9052

P2K 07267 0.756% 0.7426 07806 0.8444 0.3073 08056 0.6867 0.8973 0.8725 08820 08886 0.8928 08900 0.8942

PEG  0.8185 0.8727 09027 08823 09166 09024 08925 0.7855 009257 0.9428 0.9453 09245 0.9256 09258 0.9285

C  AWGN 07413 07772 07603 07738 08373 07762 0788 07333 08832 08726 08583 0.88%7 0.8909 08859 083874
5 GB 0.7827 0.8116 0.7962 0.8092 0.8559 0.8078 07872 0.6752 0.9004 0.8843 08795 0.9007 0.9002 0.8981 0.5000
FF 07259 07572 07540 08213 08623 07525 07698 07076 09045 (0.8649 038836 09178 09160 0.9172 05157

AVG 07590 07951 07912 08139 0.8633 0.8092 08082 07177 059022 08874 08899 09043 09051 09034 09052

Table 6. Distortion-wise comparison of SROCC performed on three databases
— In each row, the double-underlined, underlined and simple bold numbers represent the first, second and third-ranked performances
respectively
—The distortion acronyms are defined in Table 2, AVG refers to the aggregated average over all noises in a database
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Figure 3. Predicted scores with the MOS on TID2013 database. The black curves are obtained by a nonlinear fitting.
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Scatter plots in Figure 3 demonstrates the predicted scores
for different IQA approaches with the subjective scores
for the TID2013 database. We see that our proposed

approaches are quite consistent in predicting scores as
compared to other methods and providing better
correlation with MOS/DMOS.

1QA Average Running Time (ms) Average Images Per Second
SSIM 0.04 22.64
MS-SSIM 0.15 6.51
IW-SSIM 0.94 1.07
MAD 3.94 0.25
FSIMc 0.65 1.55
GMSD 0.02 45.09
MCSD 0.04 26.56
VIF 3.23 0.31
VSI 0.40 2.51
HPSle 0.22 4.60
MDSI 0.06 17.15
scal 0.26 3.83
cscal 0.26 3.82
sscal 0.32 3.16
csscal 0.35 2.88

Table 7. Running time comparison on IQA models

The principal purpose of designing an IQA model is the
performance of its prediction. However, in some cases
processing time is also a major concern, especially in a
real-time system. The run-time comparison was
performed on various IQA models with MATLAB
R2018b on a computer having Intel(R) Core(TM) i5-
4670 CPU with a

3.40GHz processor and 16GB of RAM. The MATLAB
codes written by the authors of each method was
collected from their websites. We run the codes and
elapsed time was recorded; Table 7 shows the results. We
see that the improvements from SCQI take some time
cost. SCQI and CSCQI have almost the same running
time of 0.26 milliseconds with 3.83 and 3.82 images per
second respectively. However, SSCQI and CSSCQI are
able to process 3.16 and 2.88 images per second
respectively. Notwithstanding, CSSCQI can process
more images than IW-SSIM, MAD, FSIMc, VIF and VSI
among the compared methods.

4. Conclusion

In this paper, we considered the center bias of HVS and
proposed several approaches for full-reference image
quality assessment method (CSCQI, SSCQI and
CSSCQI). The merging of SCQI with spectral residual
visual saliency was successful, thanks to the novel
mixed-mode pooling strategy. Also, giving extra
emphasis on the center part of the image was also
improved the performance of quality assessment. The
proposed approaches were compared with other state-of-
the-art IQA models and they outperform most of the
competing methods. Comparing individual distortion

types, proposed methods give consistent scores.
Incorporating additional features took some extra time,
still, the proposed approaches stay above compared state-
of-the-art approaches. In our study we have already
found that this center emphasized approach enhances the
performance of few other existing IQA models and we
believe that same will happen with most of the other no-
reference and reduced-reference models. In our future
work, we will further investigate these possibilities.
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