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Abstract: We develop a novel three level implicit method of order two on a graded mesh in time for the 

approximation of 1D second order quasi-linear hyperbolic partial differential equation 𝜙𝑡𝑡 =
𝛼(𝑥, 𝑡, 𝜙)𝜙𝑥𝑥 + 𝑅(𝑥, 𝑡, 𝜙, 𝜙𝑥 , 𝜙𝑡), 0 < x < 1, t > 0 subject to appropriate initial and Dirichlet boundary 

conditions. When the method is applied to the Telegraph equation, the method is shown to be 

unconditionally stable on a graded mesh. We do not need any iterative method to solve the linear 

difference equations. An explicit method of order two at the first time level is discussed in detail. We have 

solved five benchmark problems to test the viability of the proposed method. For linear differential 

equations, we use the Gauss-elimination procedure, whereas for a nonlinear or quasi-linear differential 

equation, we use the Newton-Raphson method at each advanced time level. The suggested scheme is 

scrutinized on several physical problems to exhibit the accuracy and effectiveness of the proposed method. 
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1. Introduction 

Let us consider the 1D quasi-linear hyperbolic partial 

differential equation (HPDE) 

𝜕2𝜙

𝜕𝑡2 = 𝛼(𝑥, 𝑡, 𝜙)
𝜕2𝜙

𝜕𝑥2 + 𝑅(𝑥, 𝑡, 𝜙, 𝜙𝑥 , 𝜙𝑡),    

0 < 𝑥 < 1, 𝑡 > 0 (1) 

with two initial conditions prescribed by  

𝜙(𝑥, 0) = 𝑓(𝑥),    𝜙𝑡(𝑥, 0) = 𝑔(𝑥),     

0≤ 𝑥 ≤ 1,                                        (2) 

and two boundary conditions are given by 

𝜙(0, 𝑡) = 𝜙0(𝑡),      𝜙(1, 𝑡) = 𝜙1(𝑡),    𝑡 > 0. (3) 

We assume that 𝛼(𝑥, 𝑡, 𝜙) > 0 and 𝛼, 𝜙 are satisfactorily 

regular, and also their required higher order partial 

derivatives are defined analytically in the solution region 

Ω ≡ {(𝑥, 𝑡): 0 < 𝑥 < 1, 𝑡 > 0}.The initial and boundary  

conditions (2)-(3) are given with required regularity to 

remain the order of the method unchanged. Besides we 

presume that there exists exactly one regular solution for 

the initial boundary value problem (IBVP) (1)-(3). 

Required information is discussed by Li et al. (2007).  

The numerical approximation of 1D quasi-linear 

hyperbolic partial differential equations (HPDEs) plays a 

significant role in many areas of engineering, 

mathematical and physical sciences. The displacement of 

any point of the vibrating string at the  position x at any 

time t is represented by the function 𝜙, which is a 

function of x and t. Electromagnetic waves, chemical 

waves, seismic waves, shallow water and tsunami waves 

etc. are the examples of well-known physical waves. 

Linear and non-linear phenomena are described by linear 

and non-linear hyperbolic equations respectively. Hence, 

we cannot apply the superposition principle to the non-
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linear wave equations. It has been experienced in the past 

that the non-linear hyperbolic partial differential 

equations are more complicated to solve analytically and 

there are no general methods exist for the solution of 

such equations. Therefore, stable numerical methods are 

the only choice to handle such problems. Greenspan 

(1968) introduced the boundary value technique to obtain 

an approximate solution of the wave equation. Ciment 

and Leventhal (1975, 1978) studied fourth order compact 

implicit method for solving wave equation. Any explicit 

scheme for second order hyperbolic equation is stable for 

a certain stability range. However, Twizell (1979) has 

introduced a new compact scheme for the wave equation 

with an improved stability interval. Using additive 

operator technique, Mohanty (2007) has established 

stability range for explicit techniques for multi-

dimensional HPDEs with first order space derivative 

terms.  

     To obtain stability interval of a numerical method 

associated with second order hyperbolic type initial 

boundary value problems is a challenging task for 

engineers and research scientists. 1D Telegraphic 

equation narrates a family of the array of many physical 

systems; e.g., the propagation of current signals and 

voltage in co-axial transmission lines, the propagation of 

acoustic waves in Darcy-type porous media and parallel 

viscous Maxwell fluid flow, etc. Using the techniques for 

purely initial value problems, many researchers 

(Mohanty 2004, 2005, Mohebbi et al. 2008, Pandit et al. 

2015, Gao et al. 2007, El-Azab et al. 2007, Dehghan et 

al. 2008 and Ding et al. 2009) have proposed 

unconditionally stable implicit schemes for the 

approximation of the Telegraphic equation using uniform 

grid. To the author's knowledge, no numerical schemes 

and the corresponding stability analysis for the 

Telegraphic equation on a variable mesh in time direction 

have been considered in the literature so far.  Using three 

grid points, numerical scheme for non-linear two-point 

BVPs on a non-uniform grid have been discussed. 

Recently, Mohanty et al. (2015, 2021a, 2021b) have 

established the stability interval (0,∞) for two-steps pure 

initial value problems on a variable mesh. In the present 

paper, we discuss two new three-level implicit methods 

of order of accuracy (i) one in time and two in space, and 

(ii) two in time and two in space on a variable grid in the 

t-direction for the solution of 1D quasilinear initial-

boundary value problems (1)-(3). The paper is segregated 

as follows: In Section 2, the methods are based on a 

variable grid in the t-direction for the solution of second 

order quasilinear hyperbolic equations of order one in 

time and two in space, and two in time and space have 

been formulated. Section 3 provides the derivation of the 

numerical methods. In section 4, we discuss the 

application of the proposed methods to Telegraphic 

equation and stability analysis on the variable grid. 

Further in section 5, several hyperbolic equations of 

physical repute have been computed to elucidate and 

inspect the accuracy of the suggested methods. Finally, 

section 6 summarizes all the steps. 

2. Conceptualization and Derivation of the numerical 

methods 

Now, we consider the 1D nonlinear HPDE of the form  

𝜕2𝜙

𝜕𝑡2 = 𝛼(𝑥, 𝑡)
𝜕2𝜙

𝜕𝑥2 + 𝑅(𝑥, 𝑡, 𝜙, 𝜙𝑥 , 𝜙𝑡),   

0 < x < 1, t > 0,                  (4) 

where 𝛼(𝑥, 𝑡) > 0 and the initial and boundary conditions 

are given by (1)-(3). The domain (0,1) × (0, ∞) is 

covered with a rectangular grid of uniform grid size h > 0 

in the x-direction, where 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0(1)𝑁 + 1; 

variable grid size 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1 in t-direction, where 

𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑇.  T is a end point in which the 

approximate value of 𝜙 requires to be determined. 

Assume 𝜌 = (
𝜏𝑛+1

𝜏𝑛
)>0, n = 1, 2, 3,…, so that 𝜏𝑛+1 = 𝜌𝜏𝑛.  

For 𝜌 = 1, the grid sizes in t-direction are uniform all 

over the solution domain.   

Let  Φ𝑖
𝑛 = 𝜙(𝑥𝑖, 𝑡𝑛) be the analytical solution value of 

𝜙(𝑥, 𝑡) at the nodal point (𝑥𝑖 , 𝑡𝑛), and let ϕ𝑖
𝑛 

approximates Φ𝑖
𝑛. Let  α𝑖

𝑛 = α(𝑥𝑖 , 𝑡𝑛), α𝑥𝑖
𝑛 = α𝑥(𝑥𝑖 , 𝑡𝑛),  

α𝑡𝑖
𝑛 = α𝑡(𝑥𝑖 , 𝑡𝑛),  α𝑥𝑥𝑖

𝑛 = α𝑥𝑥(𝑥𝑖 , 𝑡𝑛) be the analytical 

values of  α, α𝑥,  α𝑡,  α𝑥𝑥 at the nodal point  (𝑥𝑖 , 𝑡𝑛), 

respectively. 

For the derivation of the method, we use Numerov type 

approximation for uniform mesh in the x-direction and 

variable mesh approximation in the t-direction. At the 

mesh point (𝑥𝑖 , 𝑡𝑛), we may write the nonlinear 

differential equation (4) as 

Φ𝑡𝑡𝑖
𝑛 − α𝑖

𝑛Φ𝑥𝑥𝑖
𝑛 = 𝑅(𝑥𝑖 , 𝑡𝑛, Φ𝑖

𝑛, Φ𝑥𝑖
𝑛, Φ𝑡𝑖

𝑛) ≡ 𝑅𝑖
𝑛(say). 

 (5) 

With the aim to derive finite difference scheme for the 

HPDE (4), consider the following linear combination:  

𝑃0𝑅𝑖
𝑛 + 𝑃1ℎ𝑅𝑥𝑖

𝑛 + 𝑃2𝜏𝑛𝑅𝑥𝑖

𝑛

= 𝑃0 [Φ̅𝑡𝑡𝑖

𝑛
−

(𝜌 − 1)

3
𝜏𝑛Φ𝑡𝑡𝑡𝑖

𝑛

+ 𝑃2𝜏𝑛Φ𝑡𝑡𝑡𝑖

𝑛 ] − ℎ𝑃1α𝑖
𝑛Φ𝑥𝑥𝑥𝑖

𝑛 

+ℎ𝑃1Φ̅𝑥𝑡𝑡𝑖

𝑛
− 𝑃2𝜏𝑛α𝑖

𝑛Φ̅𝑥𝑥𝑡𝑖

𝑛
− [𝑃0α𝑖

𝑛 + ℎ𝑃1α𝑥𝑖
𝑛 +

𝑃2𝜏𝑛α𝑡𝑖
𝑛]Φ̅𝑥𝑥𝑖

𝑛
+ 𝑂(𝜏𝑛

2 + ℎ2)  (6) 

Equating the coefficients of  Φ𝑥𝑥𝑥𝑖

𝑛 and Φ𝑡𝑡𝑡𝑖

𝑛  to zero, we 

get 
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𝑃1 = 0,  𝑃2 =
(𝜌 − 1)

3
𝑃0 

Let  𝑃0 = 1, so 𝑃2 =
(𝜌−1)

3
. 

𝐿𝜙 ≡ Φ̅𝑡𝑡𝑖

𝑛
− [α𝑖

𝑛 +
(𝜌 − 1)

3
𝜏𝑛α𝑡𝑖

𝑛] Φ̅𝑥𝑥𝑖

𝑛
 

(𝜌−1)

3
𝜏𝑛α𝑖

𝑛Φ̅𝑥𝑥𝑡𝑖

𝑛
=𝑅𝑖

𝑛 +
(𝜌−1)

3𝜌(𝜌+1)
[𝑅𝑖

𝑛+1 

−(1 − 𝜌2)𝑅𝑖
𝑛 − 𝜌2𝑅𝑖

𝑛−1]+𝑂(𝜏𝑛
2 + ℎ2). (7) 

For variable mesh discretization, we require the 

following approximations: 

Φ̅𝑡𝑖

𝑛
=

1

𝜌(1 + 𝜌)𝜏𝑛

[Φ𝑖
𝑛+1 − (1 − 𝜌2)Φ𝑖

𝑛 − 𝜌2Φ𝑖
𝑛−1] 

        = Φ𝑡𝑖
𝑛 + 𝑂(𝜏𝑛

2),  (8) 

Φ̅𝑡𝑖

𝑛+1
=

1

𝜌(1+𝜌)𝜏𝑛
[(1 + 2𝜌)Φ𝑖

𝑛+1 − (1 + 𝜌)2Φ𝑖
𝑛 +

𝜌2Φ𝑖
𝑛−1] = Φ𝑡𝑖

𝑛+1 + 𝑂(𝜏𝑛
2),                    (9) 

Φ̅𝑡𝑖

𝑛−1
=

1

𝜌(1+𝜌)𝜏𝑛
[−Φ𝑖

𝑛+1 + (1 + 𝜌)2Φ𝑖
𝑛 −

𝜌(2 + 𝜌)Φ𝑖
𝑛−1] = Φ𝑡𝑖

𝑛−1 + 𝑂(𝜏𝑛
2),          (10) 

Φ̅𝑥𝑖

𝑛
=

1

2ℎ
[Φ𝑖+1

𝑛 − Φ𝑖−1
𝑛 ] = Φ𝑥𝑖

𝑛 + 𝑂(ℎ4),   (11) 

Φ̅𝑥𝑖

𝑛+1
=

1

2ℎ
[Φ𝑖+1

𝑛+1 − Φ𝑖−1
𝑛+1] = Φ𝑥𝑖

𝑛+1 + 𝑂(ℎ2),  (12) 

Φ̅𝑥𝑖

𝑛−1
=

1

2ℎ
[Φ𝑖+1

𝑛−1 − Φ𝑖−1
𝑛−1] = Φ𝑥𝑖

𝑛−1 + 𝑂(ℎ2), (13) 

Φ̅𝑡𝑡𝑖

𝑛
=

2

𝜌(1 + 𝜌)𝜏𝑛
2

[Φ𝑖
𝑛+1 − (1 + 𝜌)Φ𝑖

𝑛 + 𝜌Φ𝑖
𝑛−1] 

         = Φ𝑡𝑡𝑖
𝑛 +

(𝜌−1)

3
𝜏𝑛Φ𝑡𝑡𝑡 + 𝑂(𝜏𝑛

2),               (14) 

Φ̅𝑥𝑥𝑖

𝑛
=

1

ℎ2
[Φ𝑖+1

𝑛 − 2Φ𝑖
𝑛 + Φ𝑖−1

𝑛 ] 

           = Φ𝑥𝑥𝑖
𝑛 + 𝑂(ℎ4),  (15) 

Φ̅𝑥𝑥𝑡𝑖

𝑛
=

1

𝜌(1+𝜌)𝜏𝑛ℎ2
[(Φ𝑖+1

𝑛+1 − 2Φ𝑖
𝑛+1 + Φ𝑖−1

𝑛+1) −

(1 − 𝜌2)(Φ𝑖+1
𝑛 − 2Φ𝑖

𝑛 + Φ𝑖−1
𝑛 ) −𝜌2(Φ𝑖+1

𝑛−1 − 2Φ𝑖
𝑛−1 +

Φ𝑖−1
𝑛−1)] = Φ𝑥𝑥𝑡𝑖

𝑛 + 𝑂(𝜏𝑛
2 + 𝜏𝑛ℎ2),                           (16) 

We require the following approximations for 

𝑅(𝑥, 𝑡, 𝜙, 𝜙𝑥, 𝜙𝑡). 

Let 

�̅�𝑖
𝑛 = 𝑅(𝑥𝑖 , 𝑡𝑛, Φ𝑖

𝑛, Φ̅𝑥𝑖

𝑛
, Φ̅𝑡𝑖

𝑛
) = 𝑅𝑖

𝑛 + 𝑂(ℎ2),     (17) 

�̅�𝑖
𝑛+1 = 𝑅 (𝑥𝑖 , 𝑡𝑛+1, Φ𝑖

𝑛+1, Φ̅𝑥𝑖

𝑛+1
, Φ̅𝑡𝑖

𝑛+1
)=𝑅𝑖

𝑛+1 +

𝑂(𝜏𝑛
2 + ℎ2),  (18) 

�̅�𝑖
𝑛−1 = 𝑅 (𝑥𝑖 , 𝑡𝑛−1, Φ𝑖

𝑛−1, Φ̅𝑥𝑖

𝑛−1
, Φ̅𝑡𝑖

𝑛−1
) 

          = 𝑅𝑖
𝑛−1 + 𝑂(𝜏𝑛

2 + ℎ2)   (19) 

Then the approximation for the differential equation (4) 

at each grid point  (𝑥𝑖 , 𝑡𝑛) is given by  

𝐿𝜙 ≡ Φ̅𝑡𝑡𝑖

𝑛
− [α𝑖

𝑛 +
(𝜌 − 1)

3
𝜏𝑛α𝑡𝑖

𝑛]Φ̅𝑥𝑥𝑖

𝑛
− 

(𝜌 − 1)

3
𝜏𝑛α𝑖

𝑛Φ̅𝑥𝑥𝑡𝑖

𝑛
   =  �̅�𝑖

𝑛 +
(𝜌 − 1)

3𝜌(𝜌 + 1)
[(�̅�𝑖

𝑛+1 

−(1 − 𝜌2)�̅�𝑖
𝑛 − 𝜌2�̅�𝑖

𝑛−1)]+ �̅�𝑖
𝑛 ; 

i = 1(1) N, n = 0, 1, 2, … (20)   

where  the local truncation error (LTE)    

�̅�𝑖
𝑛 = 𝑂(𝜏𝑛

2 + ℎ2). 

Now using the approximations (8)-(16) and (17)-(19) 

from (7) and (20), the LTE is obtained as 

�̅�𝑖
𝑛=𝑂(𝜏𝑛

2 + ℎ2).      (21) 

For quasi-linear HPDE (1), that is, whenever 𝛼 =
𝛼(𝑥, 𝑡, 𝜙), we modify the equation (17) using the 

approximations given below: 

𝛼𝑡𝑖
𝑛 =

1

𝜌(1 + 𝜌)𝜏𝑛

[α𝑖
𝑛+1 − (1 − 𝜌2)α𝑖

𝑛 − 𝜌2α𝑖
𝑛−1] 

+𝑂(𝜏𝑛
2),                                                     (22) 

𝛼𝑥𝑖
𝑛 =

1

2ℎ
[α𝑖+1

𝑛 − α𝑖−1
𝑛 ] + 𝑂(ℎ2),                        (23) 

𝛼𝑥𝑥𝑖
𝑛 =

1

ℎ2
[α𝑖+1

𝑛 − 2α𝑖
𝑛 + α𝑖−1

𝑛 ] + 𝑂(ℎ2),             (24) 

where 

α𝑖
𝑛 = 𝛼(𝑥𝑖, 𝑡𝑛, Φ𝑖

𝑛),  α𝑖±1
𝑛 = 𝛼(𝑥𝑖±1, 𝑡𝑛, Φ𝑖±1

𝑛 ),  

α𝑖
𝑛±1 = 𝛼(𝑥𝑖 , 𝑡𝑛±1, Φ𝑖

𝑛±1).   

Substituting (22)-(24) into (20), we get the numerical 

scheme of 𝑂(𝜏𝑛
2 + ℎ2) for the quasi-linear HPDE (1) 

and the order of the LTE remains the same. For   𝜌 = 1,   

⇨ 𝜏𝑛 = 𝜏𝑛+1 = 𝜏, the proposed method (20) becomes of 

𝑂(𝜏2 + ℎ2). 

Incorporating the prescribed initial and boundary 

conditions (2)-(3), the method (20) can be expressed in a 

tri-diagonal matrix form at each advanced time level. For 

linear differential equations, we use the Gauss-

elimination procedure; whereas, for a nonlinear or quasi-

linear differential equation, we use the Newton-Raphson 

method (Kelly 1995 and Hageman et al. 2004).  

3.  Stability consideration  

The mathematical modelling of well-known Telegraph 

equation in 1D with a forcing function is given by 

𝜙𝑡𝑡 + 2𝛼0𝜙𝑡 + 𝛽0
2𝜙 = 𝜙𝑥𝑥 + 𝑓(𝑥, 𝑡), 𝛼0>0, 𝛽0 ≥ 0,                                                             

 (25) 

defined in the domain [0 < 𝑥 < 1] × [𝑡 > 0], where 𝛼0, 

𝛽0 are constants. Equation (25) represents a damped 

wave equation when 𝛽0 = 0. In this section, we denote 

𝑎𝑛 = 𝛼0
2𝜏𝑛

2, 𝑏𝑛 = 𝛽0
2𝜏𝑛

2 and 𝑝𝑛 =
𝜏𝑛

ℎ
 > 0. 

Applying the scheme (20) to the PDE (25), we get 



84 Numerical Method for 1D Quasi-Linear Hyperbolic Equation... 
 

Φ̅𝑡𝑡𝑖

𝑛
− Φ̅𝑥𝑥𝑖

𝑛
−

(𝜌−1)

3
𝜏𝑛Φ̅𝑥𝑥𝑡𝑖

𝑛
+

2𝛼0(𝜌−1)

3𝜌(𝜌+1)
(Φ̅𝑡𝑖

𝑛+1
−

(1 − 𝜌2)Φ̅𝑡𝑖

𝑛
− 𝜌2Φ̅𝑡𝑖

𝑛−1
) + 2𝛼0Φ̅𝑡𝑖

𝑛
+ 𝛽0

2Φ𝑖
𝑛 

+
𝛽0

2(𝜌−1)

3𝜌(𝜌+1)
(Φ𝑖

𝑛+1 − (1 − 𝜌2)Φ𝑖
𝑛 − 𝜌2Φ𝑖

𝑛−1)] = ∑ 𝑓 +

𝑂(𝜏𝑛
2 + ℎ2),        (26) 

where 

𝑓𝑖
𝑛 = 𝑓(𝑥𝑖 , 𝑡𝑛)and∑ 𝑓 

      = 𝑓𝑖
𝑛+

(𝜌−1)

3𝜌(𝜌+1)
(𝑓𝑖

𝑛+1 − (1 − 𝜌2)𝑓𝑖
𝑛 − 𝜌2𝑓𝑖

𝑛−1).  

To simplify (26), we use the following: 

Φ̅𝑡𝑖

𝑛+1
− (1 − 𝜌2)Φ̅𝑡𝑖

𝑛
− 𝜌2Φ̅𝑡𝑖

𝑛−1
=

2

𝜏𝑛
[Φ𝑖

𝑛+1 −

(1 + 𝜌)Φ𝑖
𝑛 + 𝜌Φ𝑖

𝑛−1].                                  (27) 

Multiplying 
𝜌(𝜌+1)

2
𝜏𝑛

2 throughout (26), using the relation 

(27) and simplifying, we get 

[1 +
2(𝜌 − 1)

3
√𝑎𝑛] [Φ𝑖

𝑛+1 − (1 + 𝜌)Φ𝑖
𝑛 + 𝜌Φ𝑖

𝑛−1] 

+ [√𝑎𝑛 +
(𝜌−1)

6
𝑏𝑛 −

(𝜌−1)

6
𝑝𝑛

2𝛿𝑥
2], 

[Φ𝑖
𝑛+1 − (1 − 𝜌2)Φ𝑖

𝑛 − 𝜌2Φ𝑖
𝑛−1] 

−
𝜌(𝜌+1)

2
𝑝𝑛

2𝛿𝑥
2Φ𝑖

𝑛 +
𝜌(𝜌+1)𝑏𝑛

2
Φ𝑖

𝑛 =
𝜌(𝜌+1)

2
𝜏𝑛

2 ∑ 𝑓 +

𝑂(𝜏𝑛
4 + 𝜏𝑛

2ℎ2). (28)      

The above linear scheme is conditionally stable even for 

uniform mesh cases in both directions.  To find an 

unconditionally stable scheme of the same accuracy, we 

may re-write (28) into a similar form 

[1 +
2(𝜌 − 1)

3
√𝑎𝑛 + 𝛾1𝑏𝑛 − 𝛾2𝑝𝑛

2𝛿𝑥
2] 

[Φ𝑖
𝑛+1 − (1 + 𝜌)Φ𝑖

𝑛 + 𝜌Φ𝑖
𝑛−1]+[√𝑎𝑛 +

(𝜌−1)

6
𝑏𝑛 −

(𝜌−1)

6
𝑝𝑛

2𝛿𝑥
2] [Φ𝑖

𝑛+1 − (1 − 𝜌2)Φ𝑖
𝑛 − 𝜌2Φ𝑖

𝑛−1] 

−
𝜌(𝜌+1)

2
𝑝𝑛

2𝛿𝑥
2Φ𝑖

𝑛 +
𝜌(𝜌+1)𝑏𝑛

2
Φ𝑖

𝑛 =
𝜌(𝜌+1)

24
𝜏𝑛

2 ∑ 𝑓 +

𝑂(𝜏𝑛
4 + 𝜏𝑛

2ℎ2),  (29)   

where 𝛾1,  𝛾2 are parameters to be determined and the 

additional term  [𝛾1𝑏𝑛 − 𝛾2𝑝𝑛
2𝛿𝑥

2][Φ𝑖
𝑛+1 −

(1 + 𝜌)Φ𝑖
𝑛 + 𝜌Φ𝑖

𝑛−1] is of the higher order, does not 

alter the accuracy of the scheme. 

Assume that there exists an error 𝜖𝑖
𝑛 = Φ𝑖

𝑛 − 𝜙𝑖
𝑛 at each 

internal grid point (𝑥𝑖, 𝑡𝑛), the corresponding error 

equation is given by 

[1 +
2(𝜌 − 1)

3
√𝑎𝑛 + 𝛾1𝑏𝑛 − 𝛾2𝑝𝑛

2𝛿𝑥
2] 

[𝜖𝑖
𝑛+1 − (1 + 𝜌)𝜖𝑖

𝑛 + 𝜌𝜖𝑖
𝑛−1]+[√𝑎𝑛 +

(𝜌−1)

6
𝑏𝑛 −

(𝜌−1)

6
𝑝𝑛

2𝛿𝑥
2] [𝜖𝑖

𝑛+1 − (1 − 𝜌2)𝜖𝑖
𝑛 − 𝜌2𝜖𝑖

𝑛−1] 

−
𝜌(𝜌+1)

2
𝑝𝑛

2𝛿𝑥
2𝜖𝑖

𝑛 +
𝜌(𝜌+1)𝑏𝑛

2
𝜖𝑖

𝑛 = 𝑂(𝜏𝑛
4 + 𝜏𝑛

2ℎ2) (30)   

For stability interval of the scheme (29), at each mesh 

point   (𝑥𝑖 , 𝑡𝑛), we consider the error of the form 𝜖𝑖
𝑛 =

𝜉𝑛. exp (𝜃𝑖√−1), where  𝜃 is real & 𝜉 is in general a 

complex number. Thus using  𝜖𝑖
𝑛 = 𝜉𝑛. exp (𝜃𝑖√−1) in 

the non-homogeneous part of the error equation (30), we 

obtain the corresponding characteristic equation    

𝐴0𝜉2 + 𝐵0𝜉 + 𝐶0 = 0,                                                        (31) 

Where 

𝐴0 = [1 +
2(𝜌 − 1)

3
√𝑎𝑛 + 𝛾1𝑏𝑛 + 4𝛾2𝑝𝑛

2𝑠𝑖𝑛2
𝜃

2
] 

+[√𝑎𝑛 +
(𝜌−1)

6
𝑏𝑛 +

2(𝜌−1)

3
𝑝𝑛

2𝑠𝑖𝑛2 𝜃

2
],      (32) 

𝐵0 = −(1 + 𝜌) [1 +
2(𝜌 − 1)

3
√𝑎𝑛 + 𝛾1𝑏𝑛 + 4𝛾2𝑝𝑛

2𝑠𝑖𝑛2
𝜃

2
] 

−(1 − 𝜌2) [√𝑎𝑛 +
(𝜌 − 1)

6
𝑏𝑛 +

2(𝜌 − 1)

3
𝑝𝑛

2𝑠𝑖𝑛2
𝜃

2
] 

+2𝜌(1 + 𝜌)𝑝𝑛
2𝑠𝑖𝑛2 𝜃

2
+

𝜌(1+𝜌)

2
𝑏𝑛, (33) 

𝐶0 = 𝜌 [1 +
2(𝜌 − 1)

3
√𝑎𝑛 + 𝛾1𝑏𝑛 + 4𝛾2𝑝𝑛

2𝑠𝑖𝑛2
𝜃

2
] 

−𝜌2 [√𝑎𝑛 +
(𝜌−1)

6
𝑏𝑛 +

2(𝜌−1)

3
𝑝𝑛

2𝑠𝑖𝑛2 𝜃

2
]. (34) 

For stability, the necessary and sufficient conditions for 

|𝜉| < 1 are that   

𝐴0 + 𝐵0 + 𝐶0 > 0,  𝐴0 − 𝐶0 > 0 and 𝐴0 − 𝐵0 + 𝐶0 > 0. 

The condition 𝐴0 + 𝐵0 + 𝐶0 = 2𝜌(1 + 𝜌)𝑝𝑛
2𝑠𝑖𝑛2 𝜃

2
+

𝜌(1+𝜌)

2
𝑏𝑛>0,           (35)  

is fulfilled for 𝛼0 > 0,  𝛽0 ≥ 0 and  for all 𝜃 apart from 

𝜃 = 0  or  2 and 𝛽0 = 0. 

We will consider this case at the end of this section. 

The condition 

𝐴0 − 𝐶0 = (1 − 𝜌)[1 + (𝛾1 −
1 + 𝜌2

6
)𝑏𝑛 

+4 (𝛾2 −
1+𝜌2

6
) 𝑝𝑛

2𝑠𝑖𝑛2 𝜃

2
] +

(1+4𝜌+𝜌2)

3
√𝑎𝑛>0,       (36) 

must be satisfied for all 𝛼0 > 0,  𝛽0 ≥ 0 provided 0 <

𝜌 ≤ 1, 𝛾1 ≥
1+𝜌2

6
, 𝛾2 ≥

1+𝜌2

6
. 

Finally, the condition  

𝐴0 − 𝐵0 + 𝐶0 = 2(1 + 𝜌) [1 +
(1 − 𝜌)

3
√𝑎𝑛 

+ (𝛾1 −
2𝜌2−𝜌+2

12
) 𝑏𝑛 +4 (𝛾2 − 2𝜌2−𝜌+2

12
) 𝑝𝑛

2𝑠𝑖𝑛2 𝜃

2
] > 0, (37) 

must be satisfied for all 𝛼0>0,  𝛽0 ≥ 0  provided 0 < 𝜌 ≤

1, 𝛾1 ≥
2−𝜌+2𝜌2

12
, 𝛾2 ≥

2−𝜌+2𝜌2

12
. 

When 𝜃 = 0 or 2𝜋 and 𝛽0 = 0, the characteristic 

equation (31) becomes 
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[1 + (
1 + 2𝜌

3
) √𝑎𝑛] 𝜉2 

− [(1 + 𝜌) (1 +
2(𝜌 − 1)

3
√𝑎𝑛) + (1 − 𝜌2)√𝑎𝑛] 𝜉 

+𝜌 [1 +
2(𝜌−1)

3
√𝑎𝑛 − 𝜌√𝑎𝑛] = 0.                       (38) 

If 𝜉1 and  𝜉2 are two roots of (38), we have the relations 

𝜉1 + 𝜉2 = 1 +
𝜌[1−

(𝜌+2)

3
√𝑎𝑛]

1+
(1+2𝜌)

3
√𝑎𝑛

 ,        (39) 

𝜉1. 𝜉2= 
𝜌[1−

(𝜌+2)

3
√𝑎𝑛]

1+
(1+2𝜌)

3
√𝑎𝑛

. (40)  

Solving equations (39) and (40), we get  

𝜉1 = 1, 𝜉2 =
𝜌[1−

(𝜌+2)

3
√𝑎𝑛]

1+
(1+2𝜌)

3
√𝑎𝑛

.   

In this case also |𝜉| ≤ 1, provided 0 < 𝜌 ≤ 1. 

Since  
1+𝜌2

6
>

2−𝜌+2𝜌2

12
, the conditions (35)-(37) are 

satisfied for all variable angle 𝜃, 𝛼0 > 0,  𝛽0 ≥ 0 

provided 0 < 𝜌 ≤ 1, 𝛾1 ≥
1+𝜌2

6
, 𝛾2 ≥

1+𝜌2

6
.  Thus for    

𝛼0 > 0,  𝛽0 ≥ 0 ,  0 < 𝜌 ≤ 1, 𝛾1 ≥
1+𝜌2

6
, 𝛾2 ≥

1+𝜌2

6
, the 

scheme (29) is stable for all possibilities of  𝜏𝑛 > 0 and  

h > 0.  
 

5.  Computational results 

With the help of the approximations (14), (15) and (17), a 

variable mesh method of  𝑂(𝜏𝑛 + ℎ2) in the t-direction 

can be written as 

Φ̅𝑡𝑡𝑖

𝑛
− α𝑖

𝑛Φ̅𝑥𝑥𝑖

𝑛
 = �̅�𝑖

𝑛 + 𝑂(𝜏𝑛 + ℎ2). (41) 

We have solved several standard problems arising from 

physics and engineering using the method (20) and 

compared our values with those achieved by employing 

the scheme (41). The analytical solutions are known in 

each case. We determine the right-hand side 

homogeneous function, initial & boundary conditions 

using the analytical solution as a test process. The tri-

diagonal solver can be employed for solving the linear 

difference equation and Newton-Raphson method for 

non-linear difference equations (Hageman et al. (2004)). 

We use MATLAB codes to perform all the numerical 

computations. 

The derived methods (20), (29) and (41) for second order 

HPDEs are three-level implicit schemes. To commence 

the estimation, it’s mandatory to calculate the 

approximate solution of 𝜙 of desired accuracy at 𝑡 =
𝜏1.As it is given the values of 𝜙 and 𝜙𝑡 at t = 0 explicitly, 

we can determine the values of subsequent tangential 

derivatives of 𝜙 and 𝜙𝑡 at t = 0, which implies that at t = 

0, the values of  𝜙,  𝜙𝑥,  𝜙𝑥𝑥 …, 𝜙𝑡, 𝜙𝑡𝑥 , 𝜙𝑡𝑥𝑥 , etc are 

known. 

Using Taylor’s expansion, an approximation at first time 

level is given by 

Φ𝑖
1 = Φ𝑖

0 + 𝜏1(Φ𝑡)𝑖
0 + 𝑂(𝜏1

2). (42) 

From Eq. (1), we have 

(Φ𝑡𝑡)𝑖
0 = [𝛼(𝑥, 𝑡, Φ)Φ𝑥𝑥 + 𝑅(𝑥, 𝑡, Φ, Φ𝑥 , Φ𝑡]𝑖

0. (43) 

Now using the initial values Φ and its derivatives, from 

(42), we can estimate Φ𝑡𝑡 at t = 0 and automatically, we 

get the numerical value of Φ of required accuracy at first 

time level, that is, at 𝑡 = 𝜏1. 

Example 1. We solve the Telegraph equation (25) in the 

solution domain 0 < x < 1, t > 0. The analytical solution 

is given by 𝜙(𝑥, 𝑡) = exp(−2𝑡) 𝑠𝑖𝑛ℎ𝑥. The maximum 

absolute errors (MAEs) are reported in Table 1 at 𝑡 = 1 

for different values of 𝛼0, 𝛽0, 𝛾1and 𝛾2 for  𝜂 = 0.9and 

𝜂 = 1. Figure 1 shows the numerical vs. exact solution at 

𝑡 = 1 for  𝛼0 = 10 , 𝛽0 = 5, 𝛾1 = 0.5, 𝛾2 = 1and 𝜂 =
0.9.  

Table 1. The maximum absolute errors (using proposed 

method) of Example 1 at 𝑡 = 1.0 for 𝛾 = 1.0. (with CPU 

time in seconds) 
 

N 

𝜂 = 0.9 𝜂 = 1 

𝛼 = 10, 𝛽 = 5, 

𝛾1 = 0.5, 𝛾2 = 1.0 

𝛼 = 10, 𝛽 = 5, 

𝛾1 = 0.5, 𝛾2 = 1.0 

Scheme (29) Scheme (41) Scheme (20) 

16 

(CPU time) 

5.0606e-04 

(0.036507) 

5.9262e-04 

(0.027388) 

1.6882e-05 

(0.028633) 

32 

(CPU time) 

5.0905e-04 

(0.082532) 

5.9524e-04 

(0.05804) 

4.0745e-06 

(0.075220) 

64 

(CPU time) 

5.0947e-04 

(0.369452) 

5.9601e-04 

(0.336036) 

9.5492e-07 

(0.115225) 
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Figure 1. The graph of numerical vs. exact solution of example 1 at 𝑡 = 1, 𝜂 = 0.9, 𝛾1 = 0.5, 𝛾2 = 1.0, 𝑁 = 16. 

 

Example 2. Wave equation in polar coordinates 

𝜕2𝜙

𝜕𝑡2 =
𝜕2𝜙

𝜕𝑟2 +
𝛾

𝑟

𝜕𝜙

𝜕𝑟
+ 𝑓(𝑟, 𝑡),0 < r< 1, t >0 (44) 

We solve (44) using the technique discussed in Mohanty 

et al. (1996). The analytical solution is specified by 

𝜙(𝑟, 𝑡) = 𝑟2𝑠𝑖𝑛ℎ𝑡. The MAEs are reported in Table 2 at 

t =1 for 𝛾 = 1,  𝜂 = 1.02 and 𝜂 = 1.  The numerical vs. 

exact solution curves are plotted in Figure 2 at t = 1 for  

= 1 and 𝜂 = 1.02. 

 

Table 2. The maximum absolute errors of Example 2 at 

𝑡 = 1.0 (with CPU time in seconds) for 𝛾 = 1.0 

 

N 
𝜂 = 1.02 𝜂 = 1 

Scheme (20) Scheme (41) Scheme (20) 

16 

(CPU time) 

1.2395e-06 

(0.007265) 

1.1234e-05 

(0.006221) 

1.9710e-07 

(0.010309) 

32 

(CPU time) 

6.7185e-07 

(0.032558) 

7.4206e-06 

(0.021260) 

4.7481e-08 

(0.01882) 

64 

(CPU time) 

6.6952e-07 

(0.088161) 

7.4105e-06 

(0.078849) 

1.1450e-08 

(0.097452) 
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Figure 2. The graph of numerical vs. exact solution of example 2 at = 1, 𝜂 = 1.02, 𝛾 = 1 ,𝑁 = 16. 

 

Example 3.  Vander Pol type non-linear wave equation 

𝜕2𝜙

𝜕𝑡2 =
𝜕2𝜙

𝜕𝑥2 + 𝛾(𝜙2 − 1)
𝜕𝜙

𝜕𝑡
+ 𝑓(𝑥, 𝑡), 0 <x< 1, t > 0 (45) 

The analytical solution is given by 𝜙(𝑥, 𝑡) =
exp(−𝛾𝑡) sin (𝜋𝑥). The MAEs are reported in Table 3 at 

t =1 for 𝛾 = 1,  𝜂 = 0.9 and 𝜂 = 1. The numerical vs. 

exact solution curves are plotted in Figure 3 at t = 1 for  

= 1 and 𝜂 = 1.02. 

 

Table 3. The maximum absolute errors for Example 3 at 

𝑡 = 1.0 (with CPU time in seconds) for 𝛾 = 1.0 

 

N 
𝜂 = 1.02 𝜂 = 1 

Scheme (20) Scheme (41) Scheme (20) 

16 

(CPU time) 

3.2018e-03 

(0.012291) 

3.2205e-03 

(0.013780) 

3.2021e-03 

(0.010624) 

32 

(CPU time) 

7.9884e-04 

(0.032748) 

8.0577e-04 

(0.025513) 

7.9855e-04 

(0.027632) 

64 

(CPU time) 

2.0005e-04 

(0.113814) 

2.0629e-04 

(0.118188) 

1.9950e-04 

(0.121405) 
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Figure 3. The graph of numerical vs. exact solution of example 3 at = 1, 𝜂 = 1.02, 𝛾 = 1 ,𝑁 = 16. 

 

Example 4. Dissipative non-linear wave equation 

𝜕2𝜙

𝜕𝑡2 =
𝜕2𝜙

𝜕𝑥2 − 2𝜙
𝜕𝜙

𝜕𝑡
+ 𝑓(𝑥, 𝑡),  0 <x< 1, t >0    (46) 

The analytical solution is defined by 𝜙(𝑥, 𝑡) =
sin(𝜋𝑥) cosh (𝑡). The MAEs are reported in Table 4 at t 

=1 for 𝜂 = 1.02 and 𝜂 = 1. The numerical vs. exact 

solution curves are displayed in Figure 4 at t = 1 for 𝜂 =
1.02. 

 

Table 4. The maximum absolute errors for Example 4 at 

𝑡 = 1.0 (with CPU time in seconds) 

 

N 
𝜂 = 1.02 𝜂 = 1 

Scheme (20) Scheme (41) Scheme (20) 

16 

(CPU time) 

4.5962e-03 

(0.015540) 

4.6089e-03 

(0.025324) 

4.6163e-03 

(0.010389) 

32 

(CPU time) 

1.1533e-03  

(0.046219) 

1.1400e-03 

(0.074779) 

1.1590e-03 

(0.026104) 

64 

(CPU time) 

2.7891e-04 

(0.135696) 

2.8400e-04  

(0.094694) 

2.9006e-04 

(0.095441) 
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Figure 4. The graph of numerical vs. exact solution of Example 4 at = 1, 𝜂 = 1.02 ,𝑁 = 16. 

 

 

Example 5: Quasi-linear equation 

𝜕2𝜙

𝜕𝑡2 = (1 + 𝜙2)
𝜕2𝜙

𝜕𝑥2 + 𝜙 (
𝜕𝜙

𝜕𝑥
+

𝜕𝜙

𝜕𝑡
) + 𝑓(𝑥, 𝑡),  0 <x< 1, t 

>0    (47) 

The analytical solution is given by 𝜙(𝑥, 𝑡) =
exp(−2𝑡) sin (𝜋𝑥). The MAEs at t =1 for 𝜂 = 1.02 and 

𝜂 = 1 are reported in Table 5. The numerical vs. exact 

solution curves are displayed in Figure 5 at t = 1 for 𝜂 =
1.02. 

 

Table 5. The maximum absolute errors of Example 5 for 

𝑡 = 1.0 (with CPU time in seconds) 

 

N 
𝜂 = 1.02 𝜂 = 1 

Scheme (20) Scheme (41) Scheme (20) 

16 

(CPU time) 

2.7465e-03 

(0.015523) 

9.7652e-03 

(0.012586) 

2.6699e-03 

(0.012885) 

32 

(CPU time) 

7.2357e-04 

(0.065103) 

6.9598e-04 

(0.020543) 

6.7040e-04 

(0.024150) 

64 

(CPU time) 

2.1534e-04 

(0.124379) 

1.9434e-04 

(0.096065) 

1.6747e-04 

(0.102078) 
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Figure 5. The graph of numerical vs. exact solution of Example 5 at = 1, 𝜂 = 1.02 , 𝑁 = 16. 

 

Employing the following formula, we calculate the order 

of convergence of the scheme for uniform case i.e. for =
1.0 : 

log(𝑒ℎ1)−log(𝑒ℎ2)

log(ℎ1)−log(ℎ2)
 (48) 

where maximum absolute errors are eℎ1
 and eℎ2

 for two 

consecutive uniform mesh sizes ℎ1 and ℎ2 respectively. 

To calculate the order of convergence of the suggested 

method, MAEs for the last two values of ℎ, i.e., ℎ1 =
1 32⁄  and ℎ2 = 1 64⁄  have been considered, and 

corresponding results are presented in Table 6.  

 

Table 6. Order of the convergence 

 

Example Parameters Order of the method 

1 
𝛼 = 10, 𝛽 = 5.0, 𝛾1 = 0.5,  

𝛾2 = 1.0     at  𝑡 = 1 
2.0932 

2 at 𝑡 = 1.0, 𝛾 = 1.0 2.0520 

3 at 𝑡 = 1.0, 𝛾 = 1.0 2.0010 

4 at 𝑡 = 1.0 1.9985 

5 at 𝑡 = 1.0 2.0011 

 

6.  Conclusion    

In this paper, using three level variable mesh points in the 

t-direction and three uniform mesh points in space 

direction, we have discussed a novel stable numerical  

 

technique of O(𝜏𝑛
2 + ℎ2) for the numerical solution of 

1D quasi-linear  HPDEs (1.1). The proposed method, 

when applied to the Telegraph equation, is shown to be 

unconditionally stable on a variable grid point in the t-
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direction, and the stability criterion is established.  We 

have solved some noteworthy problems on linear and 

non-linear wave equations to justify the usefulness of the 

proposed methods. The accuracy and efficacy of the 

developed methods are demonstrated from the computed 

numerical results. Furthermore, the suggested technique 

can be extended to 2D and 3D quasi-linear second order 

hyperbolic partial differential equations on a graded mesh 

in the time direction. 
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