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Abstract: This research investigates the behavior of magneto-hydrodynamic (MHD) flow of multiphase fluid over a 

stretching/ shrinking sheet in the presence of nanoparticle. The considering model is made of the basic 

fluid governing equations such as continuity equation, momentum equation, energy equation and 

concentration equation. The basic governing equations are changed into dimensionless system by adopting 

dimensionless parameters. Then the dimensionless governing equations are solved numerically by using 

well known explicit finite difference method (EFDM) with the help of Compaq Visual Fortran 6.6.a which 

is a computer programming language. Stability and convergence analysis are discussed for the accuracy of 

the numerical result. The graphical representation of velocity, temperature and concentration profiles that 

are affected by different physical parameters. Skin friction, Nusselt number and Sherwood number are 

shown in graphics and tabular form. The results are discussed with the physical behavior of these 

parameters. 
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1.  Introduction 

Multiphase fluid comprises of more than one 

individual component or fluid phases. Multiphase flow 

capable of acting the flow of two or different phases with 

the usual surface. Every phase shows a fragment of solid, 

liquid, or gaseous matter. The flow of stream and liquid 

are very common among various collaboration in 

industrial processes. In reactor engineering, a big 

arrangement of investigation has been executed on the 

class of double-phase flow due to the mislaying of 

coolant mishap. In fact, flows which use in a large 

number of the usual industrial processes are naturally 

multiphase flows such as liquid-particle or gas-particle 

suspensions used in combustion processes, pneumatic 

conveyors, extractors, and many processes in the 

chemical industry. The behavior of Multiphase fluid flow 

in the presence of nanoparticles passing through a 

stretching sheet have been analyzed by Reza-E-Rabbi et 

al. (2020). They investigated the behavior of multiphase 

Casson and Maxwell fluids with nonlinear chemical 

reactions. Their prime object was to characterize and 

establish a differentiating between Maxwell and Casson 

fluid in various flow fields. The impression of thermal 

radiation and ohomic dissipation on magneto-

hydrodynamic boundary layer flow of Williamson fluid 

was examined by Hayat et al. (2016). Two dimensional 
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steady MHD Williamson Nanofluid in presence of heat 

and mass fluxes was discussed by Venkatamanaiah et al. 

(2016). An analysis of heat and mass transfer in the 

presence of Lorentz force on Williamson nanofluid flow 

over a variable stretching sheet was introduced by Khan 

et al. (2018). The computational solutions are found by 

the shooting method. Krishnamurthy et al. (2015) 

discussed two-dimensional flow of MHD Williamson 

nanofluid over a stretching surface embedded with 

porous medium. A numerical analysis on variable 

thermal conductivity effect on flow of Carreau fluid over 

a sensor surface was inspected by Khan et al. (2016). 

They adopted shooting method for showing solutions of 

boundary layer momentum and heat equations. The 

Brownian and thermophoresis effect of the Williamson 

fluid flow over an unstable porous stretching surface is 

examined by Ali et al. (2017). They used the Homotopy 

Analysis Method for the exact solution and also exhibited 

a comparison with a numerical solution in tabular form. 

Reddy et al. (2017) analyzed the impact of 

thermophoresis and Brownian motion on unsteady 

magneto-hydrodynamics flow over a slandering 

stretching surface. They analyzed that values of 

Brownian motion and thermophoresis parameter increase 

the flow temperature, but concentration outlines decrease 

with rising in thermophoresis parameter. Abah et al. 

(2012) studied the impact of unsteady free convection 

flow on a vertically embedded plate with heat and mass 

transfer phenomena. An analysis is performed to study of 

heat and mass transfer effect on unsteady MHD flow of 

an incompressible and electrically conducting fluid by 

Barik (2016). The author also showed a numerical 

investigation of unsteady MHD flow past an isothermal 

vertical plate with a combined effect of heat and mass 

transfer. Khan et al. (2016) explored unsteady MHD 

radiation nanofluid flow past a stretching sheet with the 

help of the explicit finite difference method. Kataria and 

Patel (2016) have paid attention to the analytical study on 

MHD flow of Casson fluid over a vibrating perpendicular 

plate placed in a porous medium. Casson fluid passed 

through a vibrating perpendicular plate placed in porous 

medial including radiation and chemical reaction 

consequences was analyzed by Kataria and Patel (2016). 

It is seen from their study when the Casson parameter is 

large enough, then non-Newtonian fluid behaves like a 

Newtonian fluid.  Hussanan et al. (2014) analyzed 

unsteady heat transfer flow of Casson fluid over a vast 

wigwag vertiginous plate using Newtonian heating. Two-

dimensional steady boundary layer convective flow of 

Casson fluid past a horizontally embedded plate was 

studied by Shaw et al. (2016). Ramandevi et al. (2017) 

investigated MHD flow and heat lift of two sharp non-

Newtonian fluids over an expanding sheet with the latest 

heat flux theory. Study on MHD free convection flow 

with variable surface over vertical plate was analyzed by 

Naby et al (2003). Khan et al. (2016) explored unsteady 

MHD radiation nanofluid flow past a stretching sheet 

with help of explicit finite difference method. A 

numerical solution of unsteady MHD flow over a semi-

infinite vertical plate was presented by Loganathan 

(2010). Hemalatha and Bhaskar (2014) studied MHD 

boundary layer free convective flow with heat creation 

and convective frontier constrain. The laminar frontier 

stream of a tangent hyperbolic fluid past an upright 

absorptive cone was examined by Gaffar et al. (2016). 

Parveen and Alim (2012) deliberated the joule heating 

effect in presence of magnetic field of electrically 

conducting fluid with free convection boundary layer 

flow along a vertical wavy surface. In addition, a 

significant percentage of heat and mass transfer modeling 

of Newtonian and non-Newtonian nanofluids flow has 

been done in recent years. The following articles can be 

used for detailed insight (Reza-E-Rabbi et al., 2020; 

Abro et al., 2021; Nikan et al., 2021; Gharami et al., 

2020a, 2020b) 

The goal of the present analysis is to explore the heat and 

mass transfer flow of multiphase fluid along a porous 

stretching or shrinking sheet. The basic governing 

equations are changed into dimensionless system by 

adopting dimensionless parameters. Then the non-

dimensional problem are calculated via explicit finite 

difference method (EFDM) with Fortran Language. The 

solution of the dimensionless governing equations is 

obtained and displayed graphically with stability analysis 

and convergence test. 

 

2. Mathematical Formulation 

We consider the unsteady two dimensional MHD flow of 

multiphase fluid past a stretching/ shrinking sheet. Here 

u ax  be the fluid velocity and a is the stretching/ 

shrinking constant. When 0a  then sheet is stretched 

and when 0a   then sheet is shrunk. The fluid is 

flowing in x direction. Here, x axis be considered in the 

direction along sheet and y axis be perpendicular to 

surface. The flow be produced by exerting two uniform 

and opposing forces along x axis. An identical transversal 

magnetic field 0B be set perpendicularly in flow 

direction and produced magnetic field be excluded 

because of small Reynolds number. Suppose 

, andw w wU T C are the nanoparticle fluid velocity, 

temperature, and concentration near surface. Variable 

temperature and concentration  wT x T  and  wC x C

, where T is the uniform ambient temperature and C is 

the uniform ambient concentration of the fluid.  
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Figure 1. Physical configuration and co-ordinate system 

The two dimensional governing equations i.e. continuity, 

momentum, energy and concentration equations are 

given below 
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(5) 

Here, u and v be the velocity components in x and y 

direction respectively, T is the fluid temperature, C is the 

fluid Concentration, oB  is the applied magnetic field, 

T  is the thermal expansion, C  is the concentration 

expansion,   is the kinematic viscosity,   is the 

density, K is the thermal conductivity, PC  is specific 

heat at constant pressure, rq  radiative heat flux, rK  is 

the chemical reaction,   is the time constant. Now 

utilizing Rosseland estimation, we get 
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where,  
be Stefan-Boltzmann constant and 1k  be 

average absorption coefficient. Now expanding 
4T  in a 

Taylor series about T  and ignoring higher order, we 

have 4 3 44 3T T T T   , where, T is the ambient 

temperature. Now energy equation reduces to the 

following expression:  
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(6) 

To transform the equation (1) to (6) into a set of ordinary 

differential equations the following dimensionless 

quantities are introduced 
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(7) 

Taking equation (7) the dimensionless form of the 

governing equation (1) to (6) are 
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The corresponding boundary conditions are 
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The dimensionless parameters are given below: 
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The non-dimensional quantities of skin friction, Nusselt 

number and Sherwood number are as follows 

 

3. Numerical Technique 

For solving the equations (8) to (12) the explicit finite 

difference method has been utilized within boundary 

condition. The rectangular region is split into mashes of 

line collateral to X and Y axis. Here we consider X axis 

analogous to plate and Y axis perpendicular to the plate 

as shown in figure 2.  Height of the plate is max 30X   i.e. 

X changes from 0 to 30 and regard  max 50Y   i.e. 

changes from 0 to 50. The grid spacing are 200m   in X 

direction and 300n   in Y direction. It is considered that 

X and Y be constant lattice area toward X and Y ways 

respectively and conclude as  0.15 0 30X X     and 

 0.17 0 50Y Y     with small time step 0.001 

. Let , , andU V      depicts the value of , , andU V    at 

end of time step respectively. 

 

Figure 2. Finite difference space grid 

Applying explicit finite difference method equations (8) 

to (12) are solved numerically and given below 
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Concentration Equation: 

 

 

(16) 

The Corresponding boundary condition: 
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Where, i and j designates mesh points toward X and Y 

axis respectively and  n indicates magnitude of time,

n   , here n=0,1,2,3,… 

 

4. Stability and Convergence Analysis 

The investigation of the problem will imperfect except 

we examine the stability of explicit finite difference 

technique. At time  , the Fourier expansion for the 

common term , andU   are 
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Substituting the expressions (18) and (19) into equations 

(13) to (16) and let U and V are constant through any 

time step, we get 

Momentum Equation: 
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Concentration Equation: 
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The equations (25) to (27) can be expressed as matrix 

form 
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To get stability criterion, eigenvalues of the matrix T 

should be obtained. Time step  is very small in 

explicit finite difference method i.e. tends to zero. Under 
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The maximum negative values of 
1 5 7, andA A A are -1. 

Hence the stability conditions are 
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From initial boundary conditions 0U V T   , 

0.001  , 0.15x   and 0.17Y  , then the 

problem will be converged at Pr 0.09  and 0.03Sc  .  

5. Results and Discussion 

Two dimensional unsteady magneto-hydrodynamics 

boundary layer of multiphase fluid flow over a stretching 

or shrinking sheet has been investigated. In this section, 

the outcome of the problem is debated which have been 

found by enticing explicit finite difference method. The 

suitable values of the physical parameters are chosen as: 

5Gr  , 5Gm  , 1.0Sc  , 2.0Sr  , Pr 0.71 , 2.50R  , 

0.10We  , 1.50Kc  , 0.50Ec  , 1Da  , 1M   for 

accuracy of the results. The above mentioned parameters 

effects on velocity, temperature as well as concentration 

profiles are expressed below. 

 Figure 3 represent the impact of modified Grashof 

number (Gm) on velocity outlines. Velocity increases at a 

proportional rate with modified Grashof number. So 

increasing value of modified Grashof number proliferates 

thermal elasticity force and high elasticity force increase 

velocity. The influence of the velocity distributions of 

thermal Grashof number (Gr) is discussed in Figure 4. 

Thermal buoyancy force increase the gravitational force 

which stem liquid particles for this reason velocity 

increase. The effect of different values of radiation 

parameter (R) on velocity profile is shown with the help 

of Figure 5. It is apparent that velocity has upswing 

tendency with increasing value of radiation parameter. 

Figure 6 reveal the influence of the changing the values 

of radiation parameter on temperature outline. Radiation 

is a heat transfer process which emits the energy through 

fluid particle. Hence temperature distribution increases 

for high values of radiation parameter. Figure 7 exhibits 

the impact of concentration outlines due to numerous 

magnitudes of Schmidt number (Sc). It is noticed that 

concentration profiles decrease at each point of flow field 

with higher value of Schmidt number because Schmidt 

number is the ratio of the momentum diffusivity to mass 

diffusivity. The plots of Prandtl number (Pr) on 

temperature profile is portrayed in Figure 8. With rising 

value of Prandtl number, thermal boundary layer 

thickness reduces. Physically at high Prandtl number 

fluid has a narrow thermal boundary layer and this 

enlarges the gradient of temperature. Figure 9 depicts the 

concentration field due to numerous magnitudes of Soret 

number (Sr). Concentration profiles expand with soar of 

Soret number. The influence of velocity distribution is 

presented for magnetic factor (M) in Figure 10. 

Physically, the presence of transverse magnetic field 
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introduces a Lorentz force that results in delay on the 

velocity field. The concentration circulation for 

numerous values of chemical reaction parameter (Kc) is 

introduced in Figure 11. Physically the chemical reaction 

parameter unveils a destructive reaction for positive 

values and this destructive reaction leads to decrease in 

concentration field that result in fails the buoyancy effect 

for concentration gradient. Figure 12 and 13 introduce 

velocity and temperature profiles for various numerical 

values of Weissenberg number (We). The observation 

from the figure is that initially velocity profile increases 

for large value of Weissenberg number but at a point, the 

velocity curve decreases. On the other hand, for 

increasing value of Weissenberg number, the thermal 

boundary layer decreases. The temperature outlines for 

various values of Eckert number Ec is portrayed in 

Figure 14. Higher Eckert number lessen width of thermal 

boundary layer that’s why temperature of the fluid 

decreases.  

Table 1. Comparison table for Gm on velocity field, U at 

y= 0.83136 when, Gr=5.0, R=1.0, Sc=0.60, Pr=0.71, 

Kr=0.6, M=1.0, Sr= 0.o and We= 0.0. 

Parameter Previous 

Results [27] 

Present 

Results 

Gm= 5.0 2.53247 2.54321 

Gm= 10.0 3.72613 3.72515 

Gm= 15.0 5.15284 5.17531 

Gm= 20.0 6.35522 6.35267 

  

Figure 3. Effect of modified Grashof number Gm on 

velocity profiles. 

Figure 4. Effect of thermal Grashof number Gr on 

velocity profiles. 

  

Figure 5. Effect of radiation parameter R on velocity 

profiles. 
Figure 6. Effect of radiation parameter R on temperature 

profiles. 
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Figure 7. Effect of Schmidt number Sc on concentration 

profiles. 

Figure 8. Effect of Prandtl number Pr on temperature 

profiles 

  

Figure 9. Effect of soret number Sr on concentration 

profiles. 

Figure 10. Effect of magnetic parameter M on velocity 

profiles. 

  

Figure 11. Effect of Weissenberg number We on 

temperature profiles. 

Figure 12. Effect of Eckert number Ec on velocity 

profiles. 
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Figure 13. Effect of chemical reaction parameter Kc on 

concentration profiles. 
Figure 14. Effect of Weissenberg number We on 

velocity profiles. 

 

 

Table 2. Variation of physical parameter (Sc, Da, Gr and Ec) on skin friction, Nusselt number and Sherwood number. 

Sc Da Gr Ec Cf Nu Sh 

0.22    0.69933 0.22462 0.14454 

0.30    0.68689 0.21501 0.17634 

0.60    0.65964 0.20084 0.24885 

 1.0   0.29226 0.14963 0.45291 

 2.0   0.44804 0.16785 0.44827 

 3.0   0.59544 0.18497 0.45416 

  2.0  0.91099 0.31836 0.89798 

  4.0  0.76386 0.21595 0.53987 

  7.0  0.69291 0.16125 0.37604 

   0.02 0.61221 0.10040 0.49841 

   0.50 0.59544 0.18497 0.45416 

   1.00 0.56963 0.33545 0.35032 
 

Figure 15 depicts the streamlines line view for Schmidt 

number 0.22Sc   and  0.30Sc  . Streamlines flood view 

for 0.22Sc   and 0.30Sc   are showed in Figure 16. It is 

noted from streamlines profile that the streamlines fall 

down due to higher values of Schmidt number. Figure 17 

and 18 represent the isotherm line view and flood view 

for magnetic parameter 1M   and  2.0M   respectively. 

Isotherm declines for growing magnitudes of magnetic 

parameter. Additionally, the impact of several physical 

parameters are discussed on skin friction, heat transfer 

rate and mass transfer rate profiles. The results are self-

evident in Table 2 and Table 3. Furthermore, a numerical 

validation has been depicted in Table 1 and an excellent 

agreement with previously published papers is visible 

there. 
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Table 3. Variation of physical parameter (R, Sr, We and Gm) on skin friction, Nusselt number and Sherwood number. 

R Sr We Gm Cf Nu Sh 

0.50    0.56638 0.35250 0.31043 

1.50    0.59107 0.20035 0.44344 

2.50    0.60561 0.15436 0.47356 

 0.10   0.62681 0.17984 0.25759 

 2.0   0.68029 0.19337 0.16078 

 4.0   0.74264 0.20685 0.08504 

  -1.00  0.48882 1.12711 -7.9490 

  -2.00  0.41726 0.93632 -6.7155 

  -3.00  0.13219 0.76065 -5.2428 

   5.0 0.59544 0.18497 0.45416 

   10.0 0.93357 0.19747 0.49117 

   15.0 1.25304 0.18514 0.58363 

 

  

Figure 15. Streamlines line view when Sc = 0.30 (Red 

dash line) and Sc=0.22 (Green dash line). 

Figure 16. Streamlines flood view when Sc = 0.30 (Red 

dash line) and Sc=0.22 (Green dash line). 

  

Figure 17. Isotherm line view when M = 2.0 (Blue dash 

line) and M=1.0 (Black dash line). 

Figure 18. Isotherm flood view when M = 2.0 (Blue 

dash line) and M=1.0 (Black dash line). 
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6.  Conclusions 

The principal findings of our study are concluded as follows 

 The velocity profile proliferates with growing values of 

thermal Grashof number (Gr), radiation parameter (R), 

soret number (Sr). On the other hand, velocity profile 

decreases for increasing values of Schmidt number (Sc), 

Prandtl number (Pr), magnetic parameter (M), chemical 

reaction parameter (Kc) and Eckert number (Ec). 

 The Temperature distribution enhances for large values 

of radiation parameter (R) and Schmidt  number (Sc) 

but shows decreasing curve for  Weissenberg number 

(We), Prandtl number (Pr), soret number (Sr), magnetic 

parameter (M), Eckert number (Ec) and Darcy number 

(Da). 

 The concentration outline reduces for higher values of 

chemical reaction parameter (Kc) and Schmidt number 

(Sc) whereas soret number upsurge. 
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