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Abstract: Blind Image Quality Assessment (BIQA) is used to predict human perceptual image quality scores without 

actually knowing the reference images. State-of-the-art methods typically require human subjects to score 

a huge number of image data for a robust model at the time of the training phase. Moreover, subjective 

quality scores are discriminating, inexact, and irrational. It is very hard to obtain a large-scale database or 

to extend existing databases, because of the difficulty of collecting images, training the subjects, 

conducting subjective experiments, and reconstructing human-level quality evaluations. The proposed 

method can assess both synthetically and authentically distorted images by using a method called ‘Deep 

Bi-linear Pooling’. Two separate convolutional neural network models are used. One is used for 

synthetically distorted images and another is used for authentically distorted images. For synthetic 

distortion, a pre-trained CNN is used to classify the distortion type with available ground truth labels. And 

for authentically distorted images, a pre-trained CNN (VGG-16) is used which is trained with A large-

scale database called ’Image-Net’. Then two networks are merged with the help of a method called ’Bi-

linear’ pooling. After fine-tuning the whole model, we have got state-of-the-art results for both the 

synthetically and the authentically distorted IQA datasets. For pre-trained synthetic images, the Waterloo 

Exploration Database is used. Here in this paper, we have tried to identify which Loss function can be 

used robustly and gives the better result relative to the most used loss function such as L1 Loss or Mean 

Absolute Error, L2 loss or Mean Squared Error, Smooth L1 Loss or Huber Loss, Poisson Loss.  
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1.  Introduction

Currently, mobile phones and various stationary 

devices are used to capture digital images. These images 

are compacted by conventional and original approaches 

(Bovik, 2010; Lee et al., 2018) and are passed through 

different broadcasting mediums (Chen et al., 2019) as 

well as the images are saved in different storage forms. 

During the image capturing, proceeding, carrying, and 

warehousing, various unpredicted distortions can occur 

and in the meantime, perceptual information loss can 

happen with some image quality degradation. That’s why 

Image Quality Assessment (IQA) becomes remarkably 

important for the image quality monitoring and reliability 

of image processing systems. The final judge of the 

perceptual image quality is the human visual system, so 

subjective IQA is the most well-grounded although it is 

time consuming and expensive. Because of this, objective 
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IQA algorithms are developed for research labs to the 

actual real-world application (Maia et al., 2015) 

 

Objective IQA can be categorized as three classes: 

1) Full-reference IQA (FR-IQA) 

2) Reduced-reference IQA (RR-IQA) 

3) No-reference or Blind IQA (BIQA) 

 

Now-a-days, BIQA is one of the most attractive research 

fields for researchers. Conventional BIQA models 

usually select low-level features- handmade (Mittal et al., 

2012) or knowledgeable (Kang et al., 2014) to identify 

the degree of variations from analytical regularities of 

natural scenes, according to the quality prediction 

function is derived (Ma, 2017). For a long time, deep 

convolutional neural networks don’t use because of 

lacking of adequate ground truth values such as MOS for 

training. MOS is expressed as Mean Opinion Scores. 

Some naive solutions are also used for quality prediction 

such as, fine-tune directly to pre-trained on Image-Net 

(Fei-Fei et al., 2009; Gao et al., 2018). These models 

acquire decent functioning on LIVE Challenge Database 

(Ghadiyaram and Bovik, 2015) (distortion types called 

authentically distorted images). However, the known and 

inherent characteristics of the IQA data sets, i.e. LIVE 

(Sheikh et al., 2006) and tid2013 (Ponomarenko et al., 

2015) (distortion types called synthetically distorted 

images) prohibit them to achieve state-of-the-art 

performance for other types of distortions. On the other 

hand, image quality assessment, such as patch-based 

techniques gain quality score heirloom from the images 

or roughly by FR-IQA models (Kim and Lee, 2016). 

These models are effective for synthetically distorted 

images but not for authentically distorted images. 

Throughout the solution of BIQA, not only the 

synthetically distorted images but also authentically 

distorted images are used. For synthetic distortions in the 

previous works (Ma et al., 2017; Yue et al., 2019; 

Moorthy and Bovik, 2010), a huge amount of pre-trained 

set constructed on ‘Waterloo Exploration Data base’ 

(Ma, Duanmu et al., 2016) and another large database 

called ’PASCAL VOC’ (Everingham et al., 2010), where 

the synthetization process was done on images with 9 

distortion levels.   

When a multi-class CNN model is trained and the 

features are based on CNNs, the resulting architecture 

consists of standard CNN units for feature extraction, 

followed by a specially designed bilinear layer and a 

pooling layer. For example, the authentically distorted 

images are pre-trained using the ConvNet named VGG-

16 (Simonyan and Zisserman, 2014) which is trained on 

Image-Net (Fei-Fei et al., 2009). These networks are then 

combined with a deep bilinear pooling (Ge et al., 2019). 

By fine-tuning, the model learns on target data sets in 

form of the ’Stochastic Gradient Descent’ or (SGD) 

methodology. The observation is that- Deep Bilinear 

Convolutional Neural Networks is more powerful than 

most of the today’s ConvNet based network (Bosse et al., 

2017; Ma et al., 2017). 

Loss functions have the direct effect on the performance 

of any CNN network. With other factors, the loss func-

tions also have application dependency. A loss function 

with a specific CNN giving better performance may not 

be the best suited for another application where another 

loss functions may perform better. The contribution of 

this paper lies in the investigation of loss functions for 

the bi-linearly pooled convolutional network where the 

target application is blind image quality assessment 

(BIQA).   

 

1 Related Works 

For the assessment of blind image quality, there are a few 

models used (Wang and Bovik, 2011; Ma, 2017; Ma and 

Liu et al., 2017; Ye, 2014). A radial basis function was 

used by Tang et al. (Tang et al., 2014) for the pre-trained 

belief net, and for predicting image quality it was fine-

tuned. Biano et al. used different design options of Con-

vNet. For features classification they have used support 

vector regression (SVR). They have also pre-train the 

multi-class model by estimating MOS’s into 5 classes. 

Despite all of these, their proposed models were not 

thoroughly optimized and demand huge physical parame-

ter adaptations (Bianco et al., 2018). Ye et al. used a 

ConvNet with huge counts of images for the quality 

scores by averaging predicted images by cropping from 

patches and normalizing spatially and calculated (Ye et 

al., 2014). It is problematic in local perceptual quality 

when the quality measure of patches heirloom from equal 

images and also it is incompatible with global quality 

across spatial location; most of the time due to non-

stationary of images content across spatial locations. 

Bosse et al. overcome these problems by considering two 

approaches (Bosse et al., 2017): 
 

1) To take the mean value of multiple patches. 

2) To take the weight mean quality counts of patches 

by comparative significance. 

Kim et al. and many other researchers have used deep 

CNN for image quality assessment (Kim and Lee, 2016). 

Table I is presents some previous works on image quality 

assessment (IQA) and their used loss function and SLCC 
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scores. Deep bi-linear ConvNet (Zhang et al., 2018) was 

proposed by W. Zhang, K. Ma, J, Yan, D. Deng, and Z. 

Wang where they used two networks for two different 

types of distorted images. One is called authentically 

distorted images and another is synthetically distorted 

images. Then the two networks are merged into one by a 

method called bi-pooling.  

1.1  Loss function 

Now-a-days, neural networks are very popular for 

computer vision and image processing and various 

architectures are developed to solve numerous problems 

in this field. The loss function is one of the crucial factors 

in deep learning. But most of the time, it doesn’t get 

much interest to be focused. Actually, the l2 norm is 

chosen by default and virtually most of the time. It is 

shown that without changing the network model, and 

only by changing or taking different loss functions, the 

result could be more remarkable.  

Table 1. Review of some previous works in turn of Loss 

function and SRCC score 

Ref. Loss function Database 
SRCC 

(%) 

(Bosse et al., 
2017) 

MAE(L1) LIVE 0.96 

(Bosse et al., 

2017) 
MAE(L1) 

TID20

13 
0.84 

(Ma et al., 

2017) 

Empirical 

Cross Entropy 
Loss 

TID2

013 
0.81 

(Ma and Liu 

et al., 2017) 

RankNet’s 

Loss Function 
LIVE 0.96 

(Ma and Liu 
et al., 2017) 

RankNet’s 
Loss Function 

TID2
013 

0.90 

1.2  Some well-known loss functions 

A.  Mean Absolute Error (L1) Loss: The Mean Absolute 

Error loss is a good loss function where it is more 

remarkable to outliers. It is calculated by averaging 

of the absolute difference between the actual and 

predicted values. The formula of MAE is given in 

the equation 1. 

 

   (1) 

 

Graphical representation of the loss is shown in   

Figure 1. 

 

Figure 1.  Mean Absolute Error (L1) Loss 

A model is called a better model if it has a lower MAE 

value. The zero value is not acceptable because that has 

no significance and that’s some sort of resource lost. 

Mean Squared Error (L2) loss: 

The Mean Squared Error loss is mainly used when the 

problem is based on regression. In mathematics, if the 

target variable is distributed in Gaussian, then l2 loss is 

preferred. If there are no other remarkable issue, it is the 

most used loss function. The formula for MSE is given in 

the equation 2. 

   (2) 

Graphical representation of the loss is shown in Figure 2. 

 

Figure 2.  Mean Squared Error (L2) loss 
 

Average of the squared differences between the 

predicted and actual values is used for calculating the 

loss. The value of the loss function is always positive. 

There are some works in the context of computer 

vision tasks (Stadelmann et al., 2019). Neural networks 

that are used for denoising (Gondara, 2016; Xie et al., 

2012; Tao et al., 2018), all use the l2 norm. 
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L2 norm is arguably the dominant normalization 

function for a long time because it is convex and 

differentiable and has very convenient properties for 

optimization problems, pattern recognition, signal 

processing, image processing etc. L2 provides the 

highest probability estimates in the case of liberated 

and similar distributed Gaussian noise. 

There are some more loss functions, such as Poisson 

loss, SmoothL1Loss or Huber loss, Kullback-Leibler 

divergence, Cross-Entropy Loss etc. None of them is 

used widely, rather problem specific. 
 

2  Experimental Result  

2.1  Experiment on LIVE data-set 

A. L1 loss Function: From the Figure 3, we can see that 

over the 10 session of the LIVE data set, sessions 4 and 5 

and 8 are well forms. Others are not so suited. Data are 

skewed. Test data assessment scores have never reached 

the training data assessment scores. 

B. L2 loss Function: From the Figure 4, we can see that 

over 10 sessions on the LIVE data set have used the L2 

loss function, test date score has never given better value. 

Most probably, the set is not suitable for the L2 loss 

function or the dataset is overfitted. In the original paper 

(Zhang et al., 2018), they have used the L2 loss function. 

But in our experiment, the L2 loss function does not yield 

the overall best result. The test assessment score and train 

assessment are score is very different in a large number 

of values. 

C. SmoothL1Loss Function: From the Figure 5, we can 

see that this is far better than Fig: 4 in sense of all ses-

sions. But still, it is not very good loss function for the 

LIVE dataset. In session 1, it gives the best result, but in 

sessions 8 and 10, result changes are noticeable. Test 

scores vary drastically throughout the whole session. 

D. Poisson Loss Function: From the Fig 6, we can again 

see that the Poisson loss function is good for the LIVE 

data set. In every session, the test score and train score 

are much different in a large number of value. Not a 

single session has given a satisfactory result. Almost in 

every session, the test score is so little and changes 

drastically. 
 

2.2 Experiment on TID-2013 data-set  

A. L1 loss Function: From Figure 7, we can analyze 

that TID2013 is working fine in every session. In ses-

sions 1, 4, 7, 8 the training scores and testing scores are 

very close to each other. In sessions 2 and 5, testing 

scores are always higher than training scores. We can say 

that it could have happened that in this session the model 

is under-fitted. 

B. L2 loss Function: From Figure 8, we can see that 

sessions 2, 4, 7, 8, and 10 are working very well. But in 

session 1, the testing score never rise after the 25th 

epochs even though training scores rose after the 40th 

epoch. In sessions 5 and 10, the testing and training 

scores rise at the close to the 50th epoch. So we can pre-

dict that accuracy could be much better if we use more 

epochs. In sessions 6 and 9, the testing scores are down-

ward even though the training scores are rising. It may be 

the cause of overfitting. 

C. SmoothL1Loss Function: From Figure 9, it is 

shown that in every session the model is over-fitted in 

some sessions and under fitted in some others. In ses-

sions 1, 3, 6, and 9, the model is over-fitted and in ses-

sions 2, 5, and 8 the model is under-fitted. Sessions 3, 5, 

6, and 8 have given relatively better results in training 

and testing scores. The differences between the training 

and testing are very low which is actually good. 

D. Poisson Loss Function: From Figure 10, for Pois-

son loss function, the result is not good. Almost every 

session, the model under-fitted. In sessions 1, 2, 3, 4, 5, 

7, 8, and 10 are very much of the testing score than the 

training score. In session 2, the model is not learning 

much after the 40th epoch. In session 5 the model testing 

score always higher than the training score. The variation 

of the learning curve for training is affordable but the 

testing curve is not good because it is changing very of-

ten and the learning score is up and down. 
 

3 Dataset Compare with Various Loss 

3.1  LIVE Dataset 

The LIVE dataset is a relatively small dataset. It con-

tains around 779 images for training and testing. So, 

sometimes the model can be over-fitted. 

It is often happening for small datasets that the training 

accuracy and the testing accuracy differ very much. It is 

also observed for the LIVE dataset too. Here in the Fig 

11, it is shown. We have summarized all used loss 

functions in the table IV-A. 

 

3.2 TID2013 Dataset 

 TID2013 is a relatively larger dataset. It contains around 

3000 images for training and testing purposes. So we can 

say it is a pretty good dataset for working with large 

models. 
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Figure 3.  Graphical presentation of 10 session of L1 Loss function on LIVE 

 
 

 

 

 
 

 

Figure 4.  Graphical presentation of 10 sessions of L2 Loss function on LIVE 
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Figure 5.  Graphical presentation of 10 sessions of SmoothL1Loss function on LIVE 

 

 

 

 

 
 

 

Figure 6.  Graphical presentation of 10 sessions of Poisson Loss function on LIVE 
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Figure 7.  Graphical presentation of 10 sessions of L1 Loss function on TID2013 

 

 
 

 
 

 

Figure 8.  Graphical presentation of 10 session of L2 Loss function on TID2013 
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Figure 9.  Graphical presentation of 10 sessions of Smoothl1loss function on TID2013 
 

 

 
 

Figure 10.  Graphical presentation of 10 sessions of Poisson Loss function on TID2013 

 

For TID2013, the model works fine for the training and 

testing phase. The difference between the training score 

and testing is so low; sometimes almost equal to some 

fractions. Every loss function used is giving the same 

result but the score varies. For L2, it gives the best result. 

Although, it is not very high relatively SmoothL1 Loss. 

For Poisson loss, the training score is lower than testing. 

So we can say, for this loss function, the TID2013 data set 

is not good as it is under-fitted. It is represented in Fig 12. 

We have summarized the all used loss functions as shown 

in table IV-B. 

 

4 Conclusions  

We have tried to identify the relationship of various 

loss functions along with deep bi-linear convolutional 
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neural networks with different available data sets. The 

result is impressive that the various loss functions yield. 

Different data sets also show different accuracy when the 

same network is used, such as L1, L2, SmoothL1Loss, 

Poisson Loss, etc. When data sets are distributed in poison 

distribution, then the Poisson loss is effective. 

 
 

Figure 11.  Summary of used loss functions on LIVE 

 

 
 

Figure 12.  Summary of used loss functions on TID2013 
 

Table 2. Experimental result on live dataset 

Loss Function Name 

Training 

Avg(%) 

Testing 

Avg(%) 

L1 loss or MAE 95% 92% 

L2 loss or MSE 99% 94% 

SmoothL1Loss 95% 91% 

   PoissonLoss 99% 94% 
 

In the most cases where the problem is regression-

based, L2 loss or MSE loss is used without any other con-

sideration. But we have to observe the data set before 

applying the MSE loss function. It could be useful to use 

other loss functions too. 

Table 3. Experimental result on tid-2013 dataset 

Loss Function Name 

Training 

Avg(%) 

Testing 

Avg(%) 

L1 loss or MAE 92% 92% 

L2 loss or MSE 95% 94% 

SmoothL1Loss 94% 93% 

   PoissonLoss 90% 92% 
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