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Abstract: We develop a two level compact implicit finite difference method of order two on a graded mesh for the 

approximation of 1D nonlinear parabolic equation       (           )  (   )    [   ]  [   ]. 
The proposed method is unconditionally stable when it is applied to the linear equation. The significant 

advantage of this method is that, it is directly pertinent to singular parabolic equations to obtain 

oscillation-free solutions. To validate the applicability of the proposed method, two model examples are 

considered and solved for different values of mesh sizes in both directions. The convergence has been 

shown in the sense of maximum absolute error. The proposed method is validated via the same numerical 

test examples. The present method approximates exact solution very well. The linear difference equations 

have been solved using a tri-diagonal solver, whereas Newton–Raphson method have been used to solve 

non-linear difference equations. 
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1.  Introduction 

Nonlinear parabolic partial differential equations have 

been extensively studied as they encounter in several 

areas of mathematical, physical and engineering sciences, 

particularly in physics, biology, finance and chemistry. 

These type of PDEs are used to interpret various 

phenomena such as viscous fluid flow, heat conduction 

and transfer, filtration of liquids, chemical reactions, 

water transfer in solids, dispersion of traces in porous 

media, environmental pollution etc. (Mittal et al. 2011, 

Zhou et al. 2011, Jain et al. 1990). During last few 

decades, the problem of finding numerical solution of 

quasi linear parabolic PDEs attained much attention of 

researchers due to their practical importance. In (Mittal et 

al. 2011, Liu et al. 2011, Dehghan et al. 2014, Jain et al. 

1990, Mohanty et al. 2007), many researchers studied 

several parabolic PDEs of different physical models and 

developed numerical schemes based on approaches like 

finite difference, finite element, finite volume, spline and 

many more. In this article, we deem the following general 

form of nonlinear parabolic partial differential equations 

(PDEs)  

      (           )   (   )    [   ]  [   ]  (1) 

 subject to the initial condition  

        (   )    ( )                       (2) 

and prescribed boundary conditions  

    (   )    ( )      (   )    ( )        (3)  

We presume that the functions  (           )   ( )  
        are adequately smooth and their required 

higher order derivatives exist in solution region  . 
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Some particular forms of equation (1) are very well 

known differential equations, namely, Burgers’, Burgers–

Huxley,  Burgers–Fishers. 

Burger’s equation has broad range of applications in 

various fields e.g.: fluid and gas dynamics, nonlinear 

acoustics, elasticity etc. and it is generally corresponding 

to Navier–Stoke’s equations  (Mittal et al. 2012, 

Kadalbajoo et al. 2006). The Burgers’–Fishers equation 

arises in heat conduction and plasma physics, fluid 

mechanics and gas dynamics (Brazhnik et al. 1999, 

Mohammadi 2011, Zhu  et al. 2010). Burgers’–Huxley 

equation shows a sample model for relating the interface 

between reaction mechanisms and diffusion transports 

convection (Macías-Díaz 2018, Celik 2016, Duan et al. 

2012, Wang et al. 1990). Therefore, many eminent 

nonlinear reaction–diffusion problems can be constructed 

by equations (1)-(3).  

Beforehand, it is worth mentioning that there is a huge 

number of different approaches existing in the literature to 

approximate the solutions of equations (1)-(3) and its 

particular forms. For instance, several authors have 

introduced different numerical methods in (Mohanty 

2007, Jain  et al. 2009). Recently, there is a huge number 

of works in the literature on parabolic equations such as 

Alper Korkmaza et al. (2011) studied differential 

quadrature algorithm based on Lagrange interpolation 

polynomials for the approximation of nonlinear Burgers’ 

equation. Tomasiello (2010) worked on Burgers–Huxley 

equation and this equation was studied numerically by 

Iterative Differential Quadrature (IDQ) method which is 

based on quadrature rules. Athanassios G. Bratsos  (2011) 

proposed a two-level finite difference scheme, having 

accuracy of order four, for the numerical solution of the 

generalized Burger-Hauxly equation. Zhang et al. (2012) 

presented a numerical method by applying the local 

irregular Galerkin method to solve the generalized 

Burgers–Huxley equation and the generalized Burgers–

Fisher equation numerically. Mohebbi et al. (2010) 

projected a class of fresh finite difference techniques for 

solving the 1D heat and advection–diffusion equations. 

Goh et al. (2012) obtained approximate solutions of 1D 

heat and advection-diffusion equations by collocation 

method based on cubic B-spline. Mohanty, et al. (2017) 

used Spline in compression approximations along with 

half-step mesh for the solution of the system of 1D quasi-

linear PDEs. Ghasemi (2018) presented a numerical 

method for the solution of Nonlinear Parabolic Equations 

using extrapolated collocation method. Above methods 

cannot be applied directly to solve singular parabolic 

PDEs. Most recently Ghosh et al.(2021) eshtablished a 

method for the solution of 1D hyperbolic equation using 

graded mesh in time direction. In this present paper, we 

developed a two level compact implicit finite difference 

scheme in exponential form by using graded mesh for the 

solution of nonlinear PDEs (1)-(3). 

The paper is arranged as follows:  

Section. 2 covers the formulation of numerical scheme. 

Sec. 3 describes the complete derivation of the scheme. 

Sec. 4 covers the detailed stability analysis. In Sec. 5, 

several yardstick examples are solved to justify the 

method’s efficacy. At last, Sec. 6 presents the concluding 

notes.  

2. Conceptualization of the variable mesh method 

Solution domain   of equations (1)-(3) is discretized by 

graded mesh in spatial direction such that         
           , where   is the number of meshes. 

Let the graded mesh size be            , for    

          then mesh ratio is defined as    
    

  
  . 

Node points are given by       ∑   
 
   , where 

             We use constant mesh in time direction 

defined as             for        , where    is 

node point in time direction. 

At grid point (     ), let   
   (     )  denotes the 

exact solution and   
  denotes approximate solution of  

equations (1)-(3). For simplicity, we consider       (a 

constant   ),    ( )   . For      discretization 

reduces to the uniform mesh case.  For   >1 or   <1, the 

mesh sizes are either increasing or decreasing in order.  

In the term of approximate value   
  at the grid point 

(     ),  the above defined differential equation (1) may 

be written as                                   

                      
   (        

     
     

 )      
      (4) 

We denote some constants by 

P =         

Q = (1+ )(1+3    ), 

R =  (1+    ), 

S =  (   )  

We need the following approximations 

  ̅=                                                                (5) 

 ̅ 
     

    (   )  
    (6) 

 ̅   
        

    (   )     
 ,                            (7) 

 ̅   
        

    (   )     
                 (8) 

  ̅  
 
 
 

 
(  

      
 ),                                    (9) 

 ̅    
 

 
 

 
(    

        
 ),  (10)  

 ̅    
 

 
 

 
(    

        
 )    (11) 
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 ̅  
 
 ( ̅   

  (    )  ̅ 
     ̅   

 )  (   )            (12)                                  

 ̅    
 

 ((    ) ̅   
  (   )  ̅ 

     ̅   
 )  (   )                                    

   (13) 

 ̅    
 

 (  ̅   
  (   )  ̅ 

   (   ) ̅   
 )  (   )                                      

   (14) 

 ̅   
   (       ̅  ̅   

   ̅    
 
  ̅    

 
)                     (15) 

 ̅   
   (       ̅  ̅   

   ̅    
 
  ̅    

 
)                    (16) 

 ̅̅  
 
  ̅  

 
    [ ̅   

   ̅   
 ]                                  (17) 

 ̅̅ 
 
  (     ̅  ̅ 

   ̅̅  
 
  ̅  

 
)                                       (18)     

 ̂̂  
 
  ̅  

 
    [ ̅   

   ̅   
 ]      (19) 

 ̂̂ 
 
  (     ̅  ̅ 

   ̂̂  
 
  ̅  

 
)     (20) 

where a and b are the parameters to be resoluted.      

Then at every internal grid point (     ), the Eq. (1) is 

discretized by          

 ̅   
  (   ) ̅ 

    ̅   
  

 (   )
  
 

 
 ̿ 
     [

  ̅   
    ̅   

  (   ) ̂̂ 
 

  (   ) ̿ 
 ]+  ̂ 

        (21) 

where    
 

 
 ,          

 

 (   )
  ,     

   
 (       )

 (   )(       )
 ,    ̂ 

    (    
     

    
 ) . 

      

3. Derivation of the scheme using variable mesh 

In this section we talk about the complete derivation of 

numerical scheme.  

At the grid point (     ),  we denote 

   = 
      

 

       
,     c, d = 0, 1, 2,….. ,     (22) 

      
 ,         

 ,          
 ,          

       (23) 

Differentiating the  Eq. (1) w. r. to t and by the help of 

(22) and (23), we obtain a relation 

                              .  (24) 

By applying the fourth-order compact scheme to the 

second derivatives in (4) and applying some algebraic 

manipulations, we can write (4) as 

    
  (   )  

       
  

  (   )
  
 

 
  
     [

     
       

  (   )  
 

  (   )  
 ]+ (  

 )     (25) 

Simplifying the approximations from (5) to (16), we 

obtain 

 ̅ 
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(   )  

 

 
     

    (         
 )   (36) 

By using previously introduced approximations (32), (35) 

and (36) in the equation (17) we obtain 

 ̅̅  
 
    

         
    (      

 )  (37)                     

where    
 

 (   )
            

Therefore, equation (18) can be written as                              

 ̅̅ 
 
  (     ̅  ̅ 

   ̅̅  
 
  ̅  

 
)                                                                                    

      =   
 
+   (              )+ 

 

 
      

       +  (         
 )     (38) 

Similarly, we can rewrite equations (19) and (20) as 

 ̂̂  
 
    

         
  

  
 

 
[    (   )]     

 
 

    (      
 )   (39) 

and  

 ̂̂ 
 
  (     ̅  ̅ 

   ̂̂  
 
  ̅  

 
)                                                                                       

      =   
 
+   (              )+ 

 

 
   

   
  
 

 
[    (   )]     

      ( 
        

 )  (40)   

Further, using the approximations (26)–(28), we may 

write 

 ̅   
  (   ) ̅ 

    ̅   
      

  (   )  
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 (   )

 
   

   (    
     

    
 )    (41) 

Now by the help of the relations (35), (36), (38) and (40) 

from (21) and (25), we get the local truncation error 

(LTE): 

 ̂ 
   

  
 

  
*  (   ) (

 

 
  )   

 (   )
  
 

 
(   

 (       )(    (   )))     
   + 

                              (    
     

    
 )     (42) 

The proposed method (21) to be of  (         
 ), 

the coefficients of    
 and   

  in (42) must be equal to 

zero. Consequently the values of parameters are   
 

 
    

  
  (       )

 (   )(       )
 and the LTE reduces to 

  ̂ 
    (    

     
    

 ). 

4.  Stability consideration  

In this segment, we examine the stability of the scheme 

for the equation 

                     (   )    [   ]  [   ]   (43)  

where ‘d’ is a constant. Applying the scheme (21) to the 

Eq. (43) and neglecting the error term, we obtain the 

following linear numerical scheme for the solution of the 

Eq. (43).                       

       
    (       )  
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         (44) 

where 

     
 

  
 

 

  
 
 

 
(    

  

 
)  

    
 

  
 

 

  
 
 

 
(    

  

 
)    

   
 

  
 
 

  
 
 

 
(    

  

 
)  

   
 

  
 
 

  
 
 

 
(    

  

 
)  

Von Neumann linear stability analysis technique is used 

to detrmine the stability of the linear scheme (44). Let 

  
         is defined as the error at the node (     ), 

where ξ is considered as complex and η as real. Using 

  
          in the Eq. (44), we attain the amplification 

factor as 

   
    ( )

    ( )
, (45) 

where 

  ( )  
 (    )(       )          

              
  

For stability, it is mandatory that | |     Applying this 

condition on Eq. (45) yields, Re[ ( )]  0 which is the 

necessary and sufficient condition for linear stability. This 

condition is fulfilled for all values of R. Thus, it is obvious 

that the projected scheme when applied to the linear 

equation is unconditionally stable and generates precise 

and oscillation-free results for all values of R. 

5.  Computational results 

We have solved the following problems using the method 

(21) and compared their results with the method 

developed by Mohanty (2007). We calculaute the right 

hand side homogeneous function, initial and boundary 

conditions from the accurate solutions which are provided 

in each case. We have used the tri-diagonal solver to solve 

the linear difference equations and Newton–Raphson 

technique for non-linear difference equations. All working 

out were performed by using MATLAB. The domain [0, 

1] is divided into (N + 1) points in space-direction with 

                               

                   
    

  
        ( )   

We may write 

          (       )+ (       )+… 

+ (     )=             . 

= (                   )           (46) 

For effortlessness, we deem      (a constant),  
 ( ) , then from (46) we have 

   
   

      
.          (47) 

Using the Eq. (47), we can calculate the value of    
considering the total number of mesh ponts (N + 2), which 

is the first mesh space at the beginning of the boundary. 

The remaining mesh is resoluted by         ,    
 ( ) . Throughout our calculation we utilize the time 

step  

  
   

(   ) 
. 

Problem 1. Burgers’ equation 

 
   

   
 
  

  
  

  

  
            

The analytical solution is specified by 

  (   )  
       (  )    

  

      (  )    
  

, where          is known 

as the Reynolds number. The root mean square (RMS) 

errors for   at       are presented in Table 1 for a preset 

  = 0.75 and diverse values of   . The approximate and 

analytical solutions of problem 1 are shown in Fig. 1 and 

Fig. 2 respectively. 



 Ghosh et al./ JnUJSci., Vol. 08, No. II, June. 2022, pp. 4754 51  

Table 1. The RMSs for   at       
 

 

h 

Proposed Method Method developed by Mohanty (2007) 

                                          

 

 
 1.8738e-04     2.7816e-08     2.7932e-12 1.7200e-04     2.4020e-08    2.412e-12 

 

  
 1.4805e-05    2.2650e-09     2.2751e-13 5.7830e-05     7.7770e-09    7.8040e-13 

 

  
 1.4546e-05     2.2302e-09     2.2402e-13 3.7260e-05     4.9920e-09    5.0090e-13 

 

  
 1.4545e-05     2.2300e-09     2.2400e-13 2.6120e-05     3.4990e-09    3.5180e-13 

 

Figure 1. The approximate solution of problem 1 at    , for           ,   = 0.75,     . 

 

Figure 2. The analytical solution of problem 1 at    , for           ,   = 0.75,     . 



52 A Novel Numerical Scheme for 1D Parabolic Equation 

Problem 2.  

 (
   

   
 
 

 

  

  
)  

  

  
  (   )            

The analytical solution is specified by            . 
The RMS for   at t = 1.0 are presented in Table 2 and 3 

for a preset   = 0.8,   = 1 and 2 and diverse values of 

                                                       
                                              

Table 2. The RMS for   at       

 

h 

Proposed Method Method developed by Mohanty (2007) 

        

Re = 0.01 Re = 0.001 Re = 0.0001 Re = 0.01 Re = 0.001 Re = 0.0001 

 

 
 2.1149e-04 2.4203e-04 2.4559e-05 8.8640e-04 1.0520e-04 1.0730e-05 

 

  
 1.8264e-05 2.1223e-05 2.1575e-06 5.7420e-05 7.1560e-05 7.3540e-06 

 

  
 1.8077e-05 2.1030e-05 2.1382e-06 3.9510e-05 4.9720e-05 5.1170e-06 

 

  
 2.5677e-05 1.5601e-05 3.5741e-06 2.7700e-05 3.4870e-05 3.5890e-06 

Table 3. The RMS for   at       

 

h 

Proposed Method Method developed by Mohanty (2007) 

        

Re = 0.01 Re = 0.001 Re = 0.0001 Re = 0.01 Re = 0.001 Re = 0.0001 

 

 
 2.1149e-04 2.4203e-04 2.4559e-05 2.2630e-04 3.0780e-04 3.1920e-05 

 

  
 1.8264e-05 2.1223e-05 2.1575e-06 1.3760e-04 2.0440e-05 2.1460e-06 

 

  
 1.8077e-05 2.1030e-05 2.1382e-06 9.3630e-05 1.4140e-05 1.4890e-06 

 

  
 2.5677e-05 1.5601e-06 3.5741e-06 6.5640e-05 9.9240e-06 1.0450e-06 

 
Figure 3. The approximate solution of problem 2 at    , for              ,   = 0.75,     . 
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Figure 4. The analytical solution of problem 2 at    , for              ,   = 0.75,       

 

6.  Conclusion    

In this article, we developed a two level compact implicit 

finite difference scheme in exponential form by using 

graded mesh for the approximation of nonlinear parabolic 

PDEs. The most important advantage of the scheme is 

that, it is directly applicable to singular parabolic PDEs to 

obtain oscillation-free solutions. The method is compact 

and the computational stencil requires only nine points at 

the advanced time level. The proposed method is 

validated via the graphical and tabular form on the same 

numerical test examples. The numerical results confirm 

that the proposed method produce oscillation free solution 

for large Re. At present, we are trying to extend the 

scheme for more complex flow problems in polar 

coordinates and the complete Navier-Stokes equations 

with the pressure being an independent variable. 
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