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ABSTRACT 

This study analyzes the behavior of crucial features carried over from the conventional one-
dimensional logistic map. The plain one-dimensional logistic map has numerous significant 
aspects that have been preserved in the new dimension, and the behavior of those elements is 
being investigated in this research. Differential equations analysis can benefit from the 
utilization of maps as a tool. One-dimensional differential equations are used as an example. 
However, maps can exhibit far more complex behaviors.  It is seen that the points of 
trajectories that are near to each other diverge with time. The trajectories that never settle down 
to fixed points or periodic orbits. The trajectory of evolution can be drastically altered by even 
small changes in the initial conditions. While chaotic systems may appear nonlinear and 
random at first glance, they are in fact governed by underlying patterns. The main focus of this 
work is on how to locate the logistic map, as well as how to explore the chaotic behavior of the 
logistic equation by adjusting the governing parameters, and how to ultimately uncover 

bifurcation diagrams, etc. 
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1.  Introduction 

The theory of chaos, logistic map dynamics, 
bifurcation theory, the self-assembly and self-
organization processes, and the concept of the edge 
of chaos all make extensive use of dynamical 
systems as essential components. The study of 
dynamical systems is the primary emphasis of 
dynamical systems theory. This theory can be used 
to a broad number of subjects, including 
mathematics, physics, biology, chemistry, 
engineering, economics, history, and medicine, 
amongst others. The theory of dynamical systems is 
primarily concerned with the investigation of 
dynamical systems by Trachette et al. (2015). It 
explains how to change the motion of a chaotic 

attractor into a time-periodic motion that attracts, 
using only modest, time-dependent changes to a 
control parameter. The time-periodic motion arises 
because an unstable periodic orbit within the 
attractor has been stabilized by Filipe et al. (1992).  
Verhulst (1845) was the one who first put out the 
idea of using a logistic differential equation in his 
model of population expansion. According to this 
concept, the birthrate is the same as the product of 
the current population and the available resources 
(Kwasnicki, 2013; Girdzijauskas et al., 2012). 
Models of economic growth frequently employ this 
differential equation. It is believed that the logistic 
map can be seen as a discrete analog to this 
differential equation. The simple quadratic map, 
that is, the logistic map, displays universal and 
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chaotic dynamics (May, 1976; Baumol et al., 1989). 
Focus on one-dimensional maps to introduce 
modeling, simulation, and visualization of discrete 
nonlinear dynamical systems and chaos by Geoff 
(2018). Applications of chaos control in physical 
systems, biological systems, synchronizing chaos, 
intimating with turmoil, and targeting trajectories of 
nonlinear dynamical systems by Daniel et al. 
(2003). From the SI fractional-order epidemic 
model, a discrete SI model is proposed. Existence, 
stability, and bifurcation are analyzed. The model 
flips, and Neimark–Sacker bifurcates using the 
center manifold theorem and bifurcation theory by 
Mahmoud et al. (2018).  A significant shift in how 
they behaved was a result of a relatively little 
adjustment to one of the parameters. For the entire 
spectrum of control parameters, both the complete 
bifurcation diagram and the basin of attraction for 
the logistic map are shown by Holmgren (1994). 
On chaos, carry the bifurcation diagram for the 
logistic map for the parameter range of Frank et al. 
(2005), so it is easy to take it for granted when 
discussing it. Nevertheless, whenever one discusses 
the diagram, it is essential to point out that the first 
systematic examination of the bifurcation diagram 
was completed. One of the primary purposes of 
utilizing mathematical modeling in ecology is for 
the purpose of controlling and managing the 
dynamics of the population. One of the primary 
purposes of utilizing mathematical modeling in 
ecology is for the purpose of controlling and 
managing the dynamics of the population (Murray, 
2002; Lewis et al., 1993; May, 1974; Sharov, et al., 
1998). Habitat management, such as the 
development of corridors or stepping-stone 
population patches and the importation of 
additional individuals to support the target 
population, are also possible solutions (May et al. 
1975; May et al., 1976; Zoltan et al. 2011). The 
initial value simulations of the full non-smooth 
delay differential algebraic equation are compared 
with the smoothed bifurcation diagrams. These 
simulations provide a detailed explanation of how 
chaotic chattering dynamics originate from the non-
smooth bifurcations of periodic orbits, (Mohammad 
et al., 2016; Vasily et al., 2021) which mostly lend 
credence to the smoothing technique. 

2. Methodology 

Assume the logistic map 

  
1 (1 )n n nx rx x+ = −    (1) 

Where n is the number of iteration. Simple non-

linear dynamical equations can lead to intricate and 

chaotic behavior, as shown by the logistic map, a 

model of population dynamics. An analog of the 

continuous-time logistic map for population 

growth, where 
nx  is a dimensionless measure of 

the population in the nth generation, and r  0 is the 

intrinsic growth rate. Apply a method of local 

bifurcation analysis, such as period-doubling 

bifurcation, to the logistic map. Logistic map 

dynamics shifted in response to variations in the 

governing parameter. Many researchers assumed 

that accurate predictions could be made with more 

resources, such as better algorithms, more data, or 

more well-known mechanisms. The availability of 

resources like food, water, shelter, predators, etc. 

set a natural ceiling on population size. If we think 

about the exponentially growing limiting value 

model of the logistic differential equation. 

However, mathematicians and physicists have 

recently come to realize that this is not feasible. 

The problem is caused by chaos, a mathematical 

phenomenon. Greater computing power and 

accuracy will never produce complete predictability 

when the disorder is incorporated into a 

mathematical model. The ratio of the current 

population to the maximum population is 

represented by the number, which ranges from 0 to 

1. This nonlinear difference equation must account 

for reproduction at low population densities and 

population growth at a rate proportional to the 

existing population. There will be famine (density-

dependent mortality), where the growth rate is 

proportional to the number obtained by subtracting 

the current population from the assumed carrying 

capacity of the environment. Assuming the current 

generation's species population can be accurately 

estimated, it will be seen that a prediction of the 

population at a time in the future, t can be made 

using only data from the current generation. Chaos 

can occur in a discrete one-dimensional system. For 

example, x = 0
  

is constant, and populations 

disappear if r > 1, conversely, populations increase, 

and x = 0 is unstable if  r > 1. Mathematical 

software like MATHEMATICA was used to 

analyse the chaotic results, and the resulting 

visualizations were used to present the findings of 

our study. 
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Fig. 1:  Flow Chart of the logistic Map. 

3. Results and Discussion 

3.1 Dynamics of logistic map for control 

parameter values (0 2)r  (Eric, 2008).  

The orbits of neighboring seeds behave 

substantially differently after a few iterations 

because they are sensitive to the original 

conditions. The mathematical equation is 

frequently extremely challenging to solve 

precisely. Computers are most frequently used by 

scientists to obtain approximations of 

mathematical map answers. Unfortunately, 

scientists have frequently been unable to make 

predictions based on the results of the computer, 

despite significant advancements in 

computational speed and accuracy.  
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Fig. 2: Dynamics of the logistic map (1) for iteration number, 20n = and 0.5.r =  
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Fig. 3: Dynamics of the logistic map (1) for iteration number 30n = and 0.98r = . 
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Fig. 4: Dynamics of the logistic map (1) for iteration number 25n = and 1.56r = . 
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Fig. 5: Dynamics of the logistic map (1) for iteration number 25n = and 1.98r = . 

Iterate is the simple verb for continuously repeating 
a process. The process of iterating involves 
repeatedly evaluating a function. Figure 2 and 
figure 3 show the first 20 and 30 iterations of the 
map (1) are illustrated above for parameter 

value 0.5r =  and r = 0.98  Left side of Figure 2 

and figure 3 behave parabolic manner. For r = 1.56, 
the left side diagram in figure 4 is parabolic, but the 
right side diagram is not parabolic. At the 25th 
iteration, for r = 1.98, the left and right side 

diagrams in figure 5 exhibit different behavior and 
one point in right side diagram moves downward. 

3.2 Dynamics of logistic map for negative control 

parameter values (Eric, 2008). 
Because of its accessibility, the logistic map is 
often employed to kick off a discussion of chaos. 
Chaotic systems are extremely sensitive to their 
initial conditions, which is one feature of the 
logistic map for the negative values of r that 
provides an elementary breakdown of anarchism. 
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Fig. 6: Dynamic of the map (1) for iteration number 30n = and 1.25.r = −  
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Fig. 7: Chaotic behavior of map (1) iteration number, 60n =  and 1.9r = − . 
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Fig. 8: Chaotic behavior of the map (1) for iteration number, 65n = and 1.6.r = −  
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Fig. 9: Chaotic behavior of the map (1) for positive integer 100n = and 1.7r = − . 

Figure 6 depicts the periodic oscillation that occurred 

during the first 30 iterations, along with the 

parameter value r = − 1.25 of the map (1). Figures 7, 

8, and 9 illustrate non-periodic oscillations for the 

first 60, 65 and 100 iterations of the map, 

respectively, for r = − 1.9, − 1.6, − 1.7 values of map 

(1). In passing, we’d like to point out that Figures 7, 

8, and 9 depict an unusual condition that leads to 

chaos. The statistics presented above shift both 

upward and downward depending on the starting 

value of x that is used. 

3.3 Dynamics of the logistic map for control 

parameter values (2 4)r  (Eric, 2008). 

Oscillations begin to emerge when r more than 

three; with the period doubling as it increases at 

certain values of r , it is no longer cyclical because 

the doubling rate rises as the number approaches 

3.57. 
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Fig. 10: Chaotic behavior of the logistic map (1) for iteration number, 80n = and 2.8,3.87.r =  
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Fig. 11: Chaotic behavior of the logistic map (1) for iteration number, 40n = and 2.56,2.88.r =  
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Fig. 12: Chaotic behavior of the map (1) for iteration number, 70n = and 2.9, 3.48.r =  
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Fig. 13: Chaotic behavior of the map (1) for iteration number, 40n = and 2.96,3.48.r =  
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Fig. 14: Chaotic behavior of the map (1) for iteration number, 40n = and 3.9,3.465.r =  
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Fig. 15:  Chaotic behavior of the map (1) for iteration number, 50n = and 2.78,3.996.r =  



56 Islam and Ahmed/ JnUJSci., Vol 09, No. II, Dec. 2022, pp. 50−63 

20 40 60 80
n

0.60

0.65

0.70

xn

r 2.99

20 40 60 80
n

0.2

0.4

0.6

0.8

1.0

xn

r 4

 

Fig. 16:  Chaotic behavior of the map (1) for iteration number, 90n = and 2.99, 4.r =
 

Small windows of periodic behavior appear when 

particular ranges of chaotic behavior rise. In a 

deterministic system, chaos is the sensitive initial 

condition dependence of periodic long-term 

behavior. It is said that long-term trajectories that 

never arrive at stable sites or periodic orbits are 

uncommon. Rotation is the obvious answer to an 

equation; everything is precise and definite. 

Sensitive to beginning conditions with time, points 

on trajectories that are near to one another gradually 

diverge. Around 
r − 1

r
, the system is stable when 

1 3r   is considered. At well-defined values of 

r, oscillations begin to occur when r is greater than 

three, and their period tends to double with each 

successive increase in r. As the number reaches 

3.57, the doubling rate increases and eventually 

stops being periodic. For some ranges of r , chaotic 

activity with brief intervals of periodic behavior 

emerges as the number climbs. 

3.4 Dynamics of logistic iterative map for 

different control parameter values (Eric, 2008). 

The behavior of this map is not always obvious. 

John von Neumann first proposed a random number 

generator based on the logistic map (1) in the late 

1940s, but it wasn't until the subsequent research by 

W. Ricker in 1954 and the subsequent in-depth 

analytical exploration of logistic maps incipience in 

the 1950s with Paul Stein and Stanislaw Ulam that 

its complex properties beyond simple ambivalent 

behavior became apparent function
4x . John von 

Neumann proposed applying the logistic map (1) to 

generate numbers at random in the late 1940s. 

Logistic function 
0x and its iterated 

counterparts
1x , 

2x , 
3x , and 

4x as well as for 

varying values of the control parameter; for 

example, the value of the iterate four iterations later 

can be obtained by inputting the beginning value on 

the horizontal function
.
 x4. The Pomeau-Manneville 

scenario describes the evolution of the 

unpredictable behavior of the logistic sequence as 

the parameter r  fluctuates from about 3.57 to 

about 3.833, and it is characterized by a periodic 

(laminar) phase interrupted by bursts of a periodic 

activity. Other ranges oscillate between 5 esteems, 

etc.; all oscillation periods befall for a particular r  

parameter.  
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Fig. 17: Dynamics of the iteration map
0x , 

1x , 
2x , 

3x  &  
4x for 0.6,1.2,1.8&2.4.r =
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Fig. 18: Dynamics of the iteration map x0, x1, x2, x3 & x4 
 
for r = 0.8987, 1.7974, 2.6961 & 3/5948 
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Fig. 19: Dynamics of the iteration map
0x , 

1x , 
2x , 

3x  &  
4x for 0.9,1.8,2.7&3.6.r =
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Fig. 20:  Dynamics of the iteration map
0x , 

1x , 
2x , 

3x  &  
4x  for 0.9389,1.8778,2.8167&3.7556.r =

 



 The Study of the Chaotic Conducts of a Single Controlled Parameterized Logistic Map 59 

Above, for a range of r  values, the first value is 

shown through five iterations, with the number of 

iterations indicated by color. When it is between 1 

and 2, the population soon converges on the value 

r − 1

r
 regardless of the beginning population size. A 

population with r  between 2 and 3 will first 

experience a period of fluctuation about that 

number before arriving at the true value of 
r − 1

r
. 

For all values of r  except 3, the rate of 

convergence is linear. For this parameter, 

convergence is substantially more sluggish than 

linear. The population tends toward steady 

oscillations between two values when r is between 

3 and 3.7556. In both cases, r has a role in the 

outcome. 

3.5 The modification of the continuous equation 

to a discrete logistic map (Eric, 2008). 

To model population growth, Pierre Verhulst first 

proposed the logistic equation. It is also 

occasionally referred to as the Verhulst model or 

the logistic growth curve (1845, 1847). The model 

is continuous in time; however, a modification of 

the continuous equation to a discrete quadratic 

recurrence equation known as the logistic map is 

also extensively employed. The logistic map can be 

found in a lot of different mathematical contexts. 

The differential equation characterizes the 

continuous form of the logistic model. 

1
dN N

rN
dt K

 
= − 

 
                  

(2)        

In this equation (2), r  represents the maximum rate 

of population expansion, while K  represents the 

carrying capacity (i.e., the maximum sustainable 

population). When the two sides are divided by K  

and x  is defined as 
N

K
, the differential equation (3), 

which is also known as the logistic equation, has a 

solution. This solution  

can be found when the logistic equation is used and 

is 

0

1
( )

1
1 1 rt

x t

e
x

−

=
 

+ − 
 

                                     (3) 

The name "sigmoid" is sometimes applied to the 

function (3) and a logistic map is a discrete 

representation of the logistic equation (3). 

 

Fig. 21: Dynamics of the equation (3), for 1.8, 1.3, 0.8, 0.3,0.2,0.7,1.2,1.7&2.2.r = − − − −
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Fig. 22: Dynamics of the equation (3), for 2.8, 2.3, 1.8, 1.3, 0.8, 0.3,0.2,0.7&1.2.r = − − − − − −
 

 

Fig. 23: Dynamics of the equation (3), for 1.0, 0.5,0.0,0.5,1.0,1.5,2,2.5&3.0.r = − −
 

Plots of the previously mentioned solution are 

displayed for a variety of positive and negative 

values of beginning conditions ranging from 0.00 to 

1.5 in steps 0.08 in figure 21, the initial conditions 

ranging from 0.00 to 2 in steps 0.09 in figure 22, 

and the initial conditions ranging from 0.00 to 1.8 

in steps of 0.07, in figure 23 although it is needed 

that r is in the positive most of the time, there are 

circumstances in which this is not the case. Due to 

the fact that r  is greater than zero, the only 

possible nonnegative equilibrium is 0x =  for 

values of r less than one. The state of balance is 

steady at the moment. Since 0x =  becomes 

unstable in figure 23. When1 3r  , the steady-

state value of x = 
r − 1

r
 > 0 is unchanging. It is 

observed that the 0x = state is unstable while the 

1x =  state is stable. As can be seen in the pictures 

above, ( )x t expands exponentially with time for 

any small beginning value of x. The equation (3) 

handles the chaotic behavior that occurs when the 

initial value of x  is increased as unpredictable. 
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3.6 Graphical depictions of the different 

locations of bifurcation that can be found on the 

logistic map (Eric, 2008). 

All bifurcation diagrams include distinct darker 

curves. Investigating how the dynamical 

characteristics of a single controlled parameterized 

logistic Map (1) above are derived from charting 

the 300th through 600th iterations of 0.5, as shown in 

the examples below. The parameter value r is 

shown along the horizontal axis, and the x-value is 

plotted along the vertical axis 

 

(A)      (B) 

   

(C)      (D) 

  
  (E)                                                                (F) 

Fig. 24: Bifurcation diagrams of the equation (1): (A) 3.51 3.59r  , (B)3.49 3.63r  , 

(C) 3.56 3.67r  , (D)3.47 3.76r  , (E) 3.43 3.951r  & (F) 3.54 3.988.r 
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A range of 2–4 is permitted for the parameter value. 

Over time, x values are seen to fluctuate between 0 

and 1. There is a bifurcation diagram for
nx  within 

the range of 3.43 3.98r   up there. Pay 

attention to the white bars that go vertically. 

Attracting periodic points are represented by these 

strips. Parameter values where the attractive points 

for periods 5 and 6 are located are two of the most 

glaring examples. The above diagram is based on 

the region of the diagram containing a cluster of 

five periodic points. The expanded view shown in 

the bottom diagram emphasizes this zone. Take 

note of the region's resemblance to the bifurcation 

seen in figure 24. Bifurcations are period doublings, 

quadrupling, etc., that controls chaos in dynamical 

systems. It's when a nonlinear system's solution 

suddenly changes as a parameter is changed. As 

r is altered, bifurcations occur at the blue lines 

from the figure (A), red lines from the figure (B), 

orange lines from the figure (C), green lines from 

the figure (D), purple lines from the figure (E), and, 

orange lines from the figure (F) of the logistic map. 
 

4. Conclusion 

The time it takes to travel from one location to 

another that is on a different path increases. 

Trajectories that never come to a complete stop and 

orbits that repeat themselves fall consistently into 

this category. 

• Since 3.56 are not periodic, the doubling 

time speeds up. Chaos dominates as it 

expands, but periodic behavior is visible 

in some areas. 

• Our quick investigation will show if the 

logistic map has two or more stable 

nodes. If the logistic map has more than 

two stable nodes, our brief analysis will 

reveal it. 

• If the initial value of r is greater than one 

but less than three consecutive points, 

then the flow will stabilize at some x 

greater than zero. The fixed point, 

however, will diverge into a limit cycle of 

period 2 for r greater than 3. 

• At even larger values of r, there is a 

second fork that results in a limit cycle 

with four periods. 

• As r increases, the values of r continue to 

approach one another, and the time 

required to reach these increasingly close 

values of r continues to increase by a 

factor of two. 

• When the period reaches infinity, around 

the value of 4r = , it begins to behave 

erratically. This process keeps going on 

forever. 

• In the context of a logistic map, the initial 

value is of the utmost importance. 

• It is clear that the change and chaotic 

behavior of the logistic map is not only 

dependent on the parameters, but also on 

the number of iterations that are 

performed. 

• In the range of 3.43 and 4, this map can be 

used to detect chaotic situations for 

different iteration numbers. 
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